
Inheritance
COSC346



Inheritance

• Inheritance is the creation of a subclass from a 
previously existing class. It allows us to re-use code: 
• inheriting parent methods 
• adding new methods 
• modifying, or overriding, existing methods
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Subclass and superclass

• Subclass extends its superclass 
• Methods are inherited by subclasses 

• Member variables are inherited by subclasses
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Reasons for using inheritance

• Specialisation—subclass is a more specialised form 
of its parent  
• e.g., every square is a rectangle, not every rectangle is a 

square 

• Specification—subclass implements behaviour 
described, but not implemented, by its parent 

• Extension—subclass provides new behaviour and 
capabilities 

• Limitation—subclass restricts behaviour of the parent 
class 

• Generalisation—subclass modifies behaviour of the 
parent to create a more general kind of object

�4COSC346 Lecture 5, 2018



Is-a test

• Rule for testing whether two concepts should 
be linked by inheritance relationship 

• If the sentence “Concept A is a concept B” 
sounds right, then inheritance is likely to be 
appropriate relationship 
• Is a rectangle a square? 
• Is a square a rectangle? 
• Is an integer a complex number?
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Hierarchy

• Inheritance is transitive
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Access Control and Inheritance

Generally in OOP access control affects what is visible from 
the derived classes: 

• Inherited private methods and member variables  
• Not visible to the programmer writing the subclass code, nor the 

programmer using objects of the subclass  

• Inherited protected methods and member 
variables 
• Visible to the programmer writing the subclass code, but not the 

programmer using objects of the subclass  

• Inherited public methods and member variables 
• Visible to the programmer writing the subclass code as well as the 

programmer using objects of the subclass 
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Access Control and Inheritance
In Swift rules of visibility have nothing to do with inheritance, and 
everything to do where the subclass is implemented: 

• Inherited private methods and member variables are 
visible in the subclass only if it’s implemented in the 
same file as the superclass. 

• Inherited fileprivate methods and member variables 
are visible only in the defining source file. 

• Inherited internal methods and member variables are 
visible in the subclass only if it’s implemented in the 
same module as the superclass. 

• Inherited public methods are always visible in the 
subclass regardless of where it’s implemented. 

• Open methods and classes can be subclassed 
anywhere and should be used sparingly.
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Overriding methods

• A subclass can implement 
a method already 
defined/implemented by 
its superclass 
• In some languages (not 

Swift) parent methods 
cannot be overridden 
unless they have been 
declared as virtual 

• The method from the 
lowest subclass in the 
hierarchy gets executed
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Override control

• Final methods—method in the superclass 
that cannot be overwritten 

• Abstract methods—methods declared, but 
not implemented in the superclass: must be 
implemented in a subclass 
• Class that defines an abstract method is referred 

to as an abstract class—it cannot be 
instantiated, but it can be subclassed
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Multiple inheritance

• A scenario where a subclass has multiple 
parents
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Multiple inheritance
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Multiple inheritance

• Diamond of death
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Latent methods

• Latent methods - Richard O'Keefe  
• http://www.cs.otago.ac.nz/csis-seminars/pdfs/

29-May-2015.pdf 

• Methods that are depend on a set of abstract 
methods 

• Subclass that implements the abstract methods 
that the latent method depends on, inherits the 
latent method 

• Subclass that does not implement the abstract 
methods that the latent method depends on, 
does not inherit the latent method
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Latent methods
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Composition

• Composition is where a class includes 
another class as its instance variable 

• Has-a relationship 
• A rectangle has an edge 
• Address book has an entry for a person
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Inheritance versus composition
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Public 
interface

Inheritance versus composition
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Design Pattern - Strategy

• Encapsulates each of a family of algorithms 
• Allow the algorithm to vary independently from 

clients that use it 
• Change algorithm at runtime in response to needs 

• Different variants of an algorithm 
• Sorting algorithms with different space/time tradeoff. 

• Related classes that differ only in behaviour 
• Different brake behaviours for Car class (with/without 

ABS)
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protocol PrintStrategy {
    func print(_ string: String) -> String
}

final class UpperCaseStrategy: PrintStrategy {
    func print(_ string: String) -> String {
        return string.uppercased()
    }
}

final class LowerCaseStrategy: PrintStrategy {
    func print(_ string:String) -> String {
        return string.lowercased()
    }
}

class Printer {
    
    private let strategy: PrintStrategy
    
    func print(_ string: String) -> String {
        return self.strategy.print(string)
    }
    
    init(strategy: PrintStrategy) {
        self.strategy = strategy
    }
}

var lower = Printer(strategy: LowerCaseStrategy())
var upper = Printer(strategy: UpperCaseStrategy())

print(lower.print("Hello, World!"))
print(upper.print("Hello, World!"))
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Strategy in the real world?
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Summary?
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