
Inheritance
COSC346

Inheritance

• Inheritance is the creation of a subclass from a
previously existing class. It allows us to re-use code:
• inheriting parent methods
• adding new methods
• modifying, or overriding, existing methods

�2COSC346 Lecture 5, 2018

O
O

P

Subclass and superclass

• Subclass extends its superclass
• Methods are inherited by subclasses

• Member variables are inherited by subclasses

�3COSC346 Lecture 5, 2018

O
O

P

subclass

superclass

Reasons for using inheritance

• Specialisation—subclass is a more specialised form
of its parent
• e.g., every square is a rectangle, not every rectangle is a

square

• Specification—subclass implements behaviour
described, but not implemented, by its parent

• Extension—subclass provides new behaviour and
capabilities

• Limitation—subclass restricts behaviour of the parent
class

• Generalisation—subclass modifies behaviour of the
parent to create a more general kind of object

�4COSC346 Lecture 5, 2018

Is-a test

• Rule for testing whether two concepts should
be linked by inheritance relationship

• If the sentence “Concept A is a concept B”
sounds right, then inheritance is likely to be
appropriate relationship
• Is a rectangle a square?
• Is a square a rectangle?
• Is an integer a complex number?

�5COSC346 Lecture 5, 2018

O
O

P

Hierarchy

• Inheritance is transitive

�6COSC346 Lecture 5, 2018

O
O

P

Shape

ConvexShape ConcaveShape

Square

StarCircle Rectangle Triangle

Isosceles

The arrows point to
the parent like UML

Access Control and Inheritance

Generally in OOP access control affects what is visible from
the derived classes:

• Inherited private methods and member variables
• Not visible to the programmer writing the subclass code, nor the

programmer using objects of the subclass

• Inherited protected methods and member
variables
• Visible to the programmer writing the subclass code, but not the

programmer using objects of the subclass

• Inherited public methods and member variables
• Visible to the programmer writing the subclass code as well as the

programmer using objects of the subclass

�7COSC346 Lecture 5, 2018

O
O

P

More
restri-
ctive

Less
restri-
ctive

Access Control and Inheritance
In Swift rules of visibility have nothing to do with inheritance, and
everything to do where the subclass is implemented:

• Inherited private methods and member variables are
visible in the subclass only if it’s implemented in the
same file as the superclass.

• Inherited fileprivate methods and member variables
are visible only in the defining source file.

• Inherited internal methods and member variables are
visible in the subclass only if it’s implemented in the
same module as the superclass.

• Inherited public methods are always visible in the
subclass regardless of where it’s implemented.

• Open methods and classes can be subclassed
anywhere and should be used sparingly.

�8COSC346 Lecture 5, 2018

Sw
ift

More
restri-
ctive

Less
restri-
ctive

Overriding methods

• A subclass can implement
a method already
defined/implemented by
its superclass
• In some languages (not

Swift) parent methods
cannot be overridden
unless they have been
declared as virtual

• The method from the
lowest subclass in the
hierarchy gets executed

�9COSC346 Lecture 5, 2018

O
O

P

Override control

• Final methods—method in the superclass
that cannot be overwritten

• Abstract methods—methods declared, but
not implemented in the superclass: must be
implemented in a subclass
• Class that defines an abstract method is referred

to as an abstract class—it cannot be
instantiated, but it can be subclassed

�10COSC346 Lecture 5, 2018

O
O

P

Multiple inheritance

• A scenario where a subclass has multiple
parents

�11COSC346 Lecture 5, 2018

O
O

P

Triangle

Acute Obtuse

Equilateral Right

Isosceles

Planet

Celestial body
(mass, position, velocity)

Sphere
(radius, volume)

Multiple inheritance

�12COSC346 Lecture 5, 2018

O
O

P

Dinosaur

T-rexPteranodon*

Penguin

Bird

Hawk*

Flying*

Multiple inheritance

• Diamond of death

�13COSC346 Lecture 5, 2018

O
O

P

Class A

Class D

Class B Class C

Implements
method foo

Overrides foo

But which one? The one
implemented in B or C?

Overrides foo

Inherits foo

Latent methods

• Latent methods - Richard O'Keefe
• http://www.cs.otago.ac.nz/csis-seminars/pdfs/

29-May-2015.pdf

• Methods that are depend on a set of abstract
methods

• Subclass that implements the abstract methods
that the latent method depends on, inherits the
latent method

• Subclass that does not implement the abstract
methods that the latent method depends on,
does not inherit the latent method

�14COSC346 Lecture 5, 2018

O
O

P

http://www.cs.otago.ac.nz/csis-seminars/pdfs/29-May-2015.pdf
http://www.cs.otago.ac.nz/csis-seminars/pdfs/29-May-2015.pdf

Latent methods

�15COSC346 Lecture 5, 2018

O
O

P

(Flying*)

T-rex Pteranodon*

Penguin

Bird

Hawk*

Dinosaur

Composition

• Composition is where a class includes
another class as its instance variable

• Has-a relationship
• A rectangle has an edge
• Address book has an entry for a person

�16COSC346 Lecture 5, 2018

O
O

P

Inheritance versus composition

�17COSC346 Lecture 5, 2018

O
O

P

versus

Class Base

Class More

Class
Base

Class More

Public
interface

Inheritance versus composition

�18COSC346 Lecture 5, 2018

O
O

P

Public
interface

Protected
interface

Class More extends
Class Base

Class More includes an
object of Class Base

Class Base

Class More

Class
Base

Class More

versus

Design Pattern - Strategy

• Encapsulates each of a family of algorithms
• Allow the algorithm to vary independently from

clients that use it
• Change algorithm at runtime in response to needs

• Different variants of an algorithm
• Sorting algorithms with different space/time tradeoff.

• Related classes that differ only in behaviour
• Different brake behaviours for Car class (with/without

ABS)

!19COSC346 Lecture 5, 2018

O
O

P

�20

protocol PrintStrategy {
 func print(_ string: String) -> String
}

final class UpperCaseStrategy: PrintStrategy {
 func print(_ string: String) -> String {
 return string.uppercased()
 }
}

final class LowerCaseStrategy: PrintStrategy {
 func print(_ string:String) -> String {
 return string.lowercased()
 }
}

class Printer {

 private let strategy: PrintStrategy

 func print(_ string: String) -> String {
 return self.strategy.print(string)
 }

 init(strategy: PrintStrategy) {
 self.strategy = strategy
 }
}

var lower = Printer(strategy: LowerCaseStrategy())
var upper = Printer(strategy: UpperCaseStrategy())

print(lower.print("Hello, World!"))
print(upper.print("Hello, World!"))

Sw
ift

To
ol

m
ak

er
Bu

ild
er

Strategy in the real world?

!21COSC346 Lecture 5, 2018

Summary?

!22COSC346 Lecture 5, 2018

