Inheritance

COSC346

Inheritance

* Inheritance is the creation of a subclass from a
previously existing class. It allows us to re-use code:
* inheriting parent methods
* adding new methods
* modifying, or overriding, existing methods

o

Volume=w x h x|

COSC346 Lecture 5, 2018

Subclass and superclass

* Subclass extends its superclass
* Methods are inherited by subclasses
* Member variables are inherited by subclasses

superclass

o

Volume=w x h x|

subclass
COSC346 Lecture 5, 2018 3

Reasons for using inheritance

* Specialisation—subclass is a more specialised form
of ifs parent

° e.g., every square is arectangle, not every rectangle is @
square

* Specification—subclass implements behaviour
described, but not implemented, by its parent

* Extension—subclass provides new behaviour and
capabillities

* Limitation—subclass restricts behaviour of the parent
class

* Generalisation—subclass modifies behaviour of the
parent to create a more general kind of object
COSC346 Lecture 5, 2018

Is-a test

* Rule for testing whether two concepts should
be linked by inheritance relationship

* |f the sentence "Concept A is a concept B”
sounds right, then inheritance is likely to be
appropriate relationship

* |sarectangle a squaree
° |s asquare arectanglee¢
* |saninteger a complex numbere

COSC346 Lecture 5, 2018

Hierarchy

* Inheritance is fransitive

Shape

TN

ConvexShape ConcaveShape

_—"N t

Circle @ Rectanglel Triangle Star *

T

Square] Isosceles A

The arrows point to

the parent like UML

COSC346 Lecture 5, 2018

Access Control and Inheritance

Generally in OOP access control affects what is visible from
the derived classes:

More
* |nherited private methods and member variables restri-

* Not visible to the programmer writing the subclass code, nor the A
programmer using objects of the subclass

* Inherited protected methods and member
variables

* Visible to the programmer writing the subclass code, but not the

programmer using objects of the subclass l
* |Inherited methods and member variables
* Visible to the programmer writing the subclass code as well as the Less..
programmer using objects of the subclass restri-

ctive

COSC346 Lecture 5, 2018 7

Access Control and Inheritance

In Swift rules of visibility have nothing to do with inheritance, and
everything to do where the subclass is implemented:

* Inherited private methods and member variables are
More

visible in the subclass only if it's implemented in the st
same file as the superclass. ctive

* Inherited fileprivate methods and member variables
are visible only in the defining source file.
* Inherited internal methods and member variables are

visible in the subclass only if it's implemented in the
same module as the superclass.

* Inherited methods are always visible in the
subclass regardless of where it's implemented.

. methods and classes can be subclassed
anywhere and should be used sparingly.

COSC346 Lecture 5, 2018 8

Overriding methods

* A subclass can implement
a method already
defined/implemented by
its superclass

* In some languages (nof
Swift) parent methods
cannot be overridden
unless they have been
declared as virtual

* The method from the
lowest subclass in the

hierarchy gets executed

COSC346 Lecture 5, 2018 9

Override control

* Final methods—method in the superclass
that cannot be overwritten

* Abstract methods—methods declared, but
not implemented in the superclass: must be
Implemented in a subclass

 Class that defines an abstract method is referred
to as an abstract class—it cannot be
instantiated, but it can be subclassed

COSC346 Lecture 5, 2018 10

Multiple inheritance

* A scenario where a subclass has multiple
parents

jriangle Celestial body Sphere
/ T \ (mass, position, velocity) (radius, volume)
Isosceles Acute Obtuse \ /

\ / \ Planet

Equilateral Right

COSC346 Lecture 5, 2018 11

Multiple inheritance

Dinosaur

Pteranodon*
% o
Penguin

COSC346 Lecture 5, 2018 12

Multiple inheritance

e Diamond of death

Implements
method foo

Class A

Overrides foo |Class B Class C Overrides foo

AN

Class D

Inherits foo

But which one? The one
implemented in B or C?

COSC346 Lecture 5, 2018 13

Latent methods

e Latent methods - Richard O'Keefe

e hiftp://www.Cs.otago.ac.nz/csis-seminars/pdfs/
29-May-2015.pdf

* Methods that are depend on a set of abstract
methods

* Subclass that implements the abstract methods
that the latent method depends on, inherits the
latent method

* Subclass that does not implement the albstract
methods that the latent method depends on,
does not inherit the latent method

COSC346 Lecture 5, 2018 14

http://www.cs.otago.ac.nz/csis-seminars/pdfs/29-May-2015.pdf
http://www.cs.otago.ac.nz/csis-seminars/pdfs/29-May-2015.pdf

Latent methods

Dinosaur
(Flying*)
Bird T-rex

Penguin

COSC346 Lecture 5, 2018

Pteranodon®

Ve

15

Composition

* Composition Is where a class includes
another class as its instance variable

* Has-a relationship
* Arectangle has an edge
* Address book has an entry for a person

COSC346 Lecture 5, 2018 16

Inheritance versus composition

versus

— Class Base —

COSC346 Lecture 5, 2018 17

Inheritance versus composition

Class More extends Class More includes an
Public (Class Base object of Class Base
interface_—>»

Protected Versus

nterface

— Class Base —

N

Public
interface

COSC346 Lecture 5, 2018 18

Design Pattern - Strategy

* Encapsulates each of a family of algorithms

* Allow the algorithm to vary independently from
clients that use it

 Change algorithm at runtime in response to needs

* Different variants of an algorithm
* Sorting algorithms with different space/time tradeoff.
Related classes that differ only in behaviour

* Different brake behaviours for Car class (with/without
ABS)

COSC346 Lecture 5, 2018 19

Toolmaker

Builder

protocol PrintStrategy {
func print(_ string: String) —> String
by

final class UpperCaseStrategy: PrintStrategy {
func print(_ string: String) —> String {
return string.uppercased()
¥

by

final class LowerCaseStrategy: PrintStrategy {
func print(_ string:String) —> String {
return string. lowercased()
¥

class Printer {

private let strategy: PrintStrategy

func print(_ string: String) -> String {

return self.strategy.print(string)

}

init(strategy: PrintStrategy) {
self.strategy = strategy
¥

var lower
var upper

print(lower.print("Hello, World!"))
print(upper.print("Hello, World!"))

Printer(strategy: LowerCaseStrategy())
Printer(strategy: UpperCaseStrategy())

20

Strategy in the real world?

COSC346 Lecture 5, 2018

21

Summary?

COSC346 Lecture 5, 2018

22

