
Inheritance (cont.)
COSC346

Benefits of inheritance

• Code reusability—no need to implement
methods inherited from the parent

• Interface consistency—easy to conform to
generic requirements for an interface while
implementing only few methods

• Code portability—lower level routines
(superclasses at the top of the tree) can be
used in different projects

�2COSC346 Lecture 6, 2018

O
O

P

Cost of inheritance

• Weakens encapsulation—need to
understand how the superclass works in order
to use the subclass

• Execution speed—especially at initialisation
time, when a series of constructors
(initialisation routines) get invoked

• Memory usage—for a specialised subclass, is
it worth carrying “extra baggage” of internal
variables that comes with the parent class?

�3COSC346 Lecture 6, 2018

O
O

P

Upcasting and Downcasting

• Casting refers to treating objects as if they were of different types
• Upcasting—changing type label of object to that of its parent

class
• Implicit cast—never fails because child object is a parent object
• Methods added by the child are not available after the upcast
• Parent’s methods that have been overridden by the child retain the

overridden behaviour

• Downcasting—changing type label of
an object to that of its child class
• Explicit cast—can fail because a given

object may or may not be an instance
of the expected subclass

• Usually done to reverse upcasting
• Generally considered a bad practice

�4COSC346 Lecture 6, 2018

O
O

P

Shape

ConvexShape ConcaveShape

Square

StarCircle Rectangle Triangle

Isoceles

Inheritance in Swift

• In Swift a class can extend only one superclass—it
can have only one parent

• Technically this makes Swift slightly less expressive
• But it sidesteps the problems associated with multiple

inheritance

• Most of the time, a multiple inheritance hierarchy can
be rearranged to conform to a single-parent paradigm

�5COSC346 Lecture 6, 2018

Sw
ift

Triangle

Acute

Equilateral

Isosceles

Triangle

Acute

Equilateral

Isosceles

Example: Composition

�6COSC346 Lecture 6, 2018

Sw
ift

public class XYPoint {
 public var x, y: Int

 public init(x: Int, y: Int) {
 self.x = x
 self.y = y
 }
}

public class Shape {
 internal var position: XYPoint

 public init(position: XYPoint) {
 self.position = position
 }

 public func translate(by translation: XYPoint) {
 self.position.x += translation.x
 self.position.y += translation.y
 }

}

var shape: Shape = Shape(position: XYPoint(x: 2, y: 3))

shape.translate(by: XYPoint(x: 3, y: 0))

Class Shape has a
member variable
that is an instance of
class XYPoint

Inheritance

�7COSC346 Lecture 6, 2018

Sw
ift

public class Rectangle : Shape {
 internal var w, h: Int

 public var area: Int {
 return self.w*self.h
 }

 public var description: String {
 return "Rectangle at (\(self.position.x),\(self.position.y))" +
 "of width: \(self.w) and height: \(self.h)"
 }

 public init(position: XYPoint, width: Int, height: Int) {
 self.w = width
 self.h = height
 super.init(position: position)
 }
}

var rect: Rectangle = Rectangle(position: XYPoint(x: 2, y: 3),
 width: 4,
 height: 2)

rect.translate(by: XYPoint(x: 3, y: 0))
print("Rectangle area is: \(rect.area)")

Class Rectangle inherits
from class Shape

Class Rectangle defines new stored properties

Class Rectangle defines a new
computed properties

Class Rectangle uses its superclass
initialiser to initialise the inherited
properties

Class Rectangle also inherited
Shape’s “translate” method

Class Rectangle
inherited “position”
property from
Shape (its parent)

Overriding

• Note: Swift doesn’t have abstract methods/classes,
but similar behaviour can be achieved with protocols

�8COSC346 Lecture 6, 2018

Sw
ift

public class Square: Rectangle {

 override public var description: String {
 return "Square at (\(self.position.x),\(self.position.y))" +
 " of side: \(self.w)"
 }

 init(position: XYPoint, side: Int) {
 super.init(position: position, width: side, height: side)
 }

}

var sqr: Square = Square(position: XYPoint(x: 2, y: 3),
 side: 3)

sqr.translate(by: XYPoint(x: 3, y: 0))
print("Square area is: \(sqr.area)")
print("\(sqr.description)")

Class Square
overrides
Rectangle’s
computed
property

Class Square inherits
from class Rectangle

Class Square
inherited “position”
property from
Shape (its parent’s
parent)

Class Square inherited “w” property
from Rectangle (its parent)

Class Square uses its superclass initialiser to
initialise the inherited properties

Inherited method from Shape
Inherited computed property from Rectangle

Overridden computed property

Example: Class hierarchy

�9COSC346 Lecture 6, 2018

O
O

P

XYPoint

x, y: Int

init(x: Int,y: Int)

Shape

position: XYPoint

translate(trans: XYPoint)

Rectangle:Shape

position: XYPoint

translate(trans: XYPoint)

w, h: Int
area: Int
description: String

Square:Rectangle:Shape
position: XYPoint

translate(trans: XYPoint)

w, h: Int
area: Int
description: String

Shape

Rectangle

Square

Example: Access control (public)

�10COSC346 Lecture 6, 2018

O
O

P

XYPoint

x, y: Int

init(x: Int,y: Int)

Shape
position: XYPoint

translate(trans: XYPoint)

Rectangle:Shape

position: XYPoint

translate(trans: XYPoint)

w, h: Int
area: Int
description: String

Square:Rectangle:Shape
position: XYPoint

translate(trans: XYPoint)

w, h: Int
area: Int
description: String

Shape

Rectangle

Square

internal

Upcasting

�11COSC346 Lecture 6, 2018

Sw
ift

func willTranslate(shape: Shape, by translation: XYPoint) {
 shape.translate(by: translation)
}

var shape: Shape = Shape(position: XYPoint(x: 2, y: 3))

var rect: Rectangle = Rectangle(position: XYPoint(x: 2, y: 3),
 width: 4,
 height: 2)

var sqr: Square = Square(position: XYPoint(x: 2, y: 3),
 side: 3)

willTranslate(shape: shape, by: XYPoint(x: -1, y: 4))

willTranslate(shape: rect, by: XYPoint(x: -2, y: -2))
willTranslate(shape: sqr, by: XYPoint(x: 2, y: 0))

Accepts argument of
type Shape

Rectangle is a
Shape, so it’s
automatically
upcasted

Square is a Shape, so it’s
automatically upcasted

Example: Upcasting

�12COSC346 Lecture 6, 2018

O
O

P

XYPoint

x, y: Int

init(x: Int,y: Int)

Shape
position: XYPoint

translate(trans: XYPoint)

Rectangle:Shape

position: XYPoint

translate(trans: XYPoint)

w, h: Int
area: Int
description: String

Square:Rectangle:Shape
position: XYPoint

translate(trans: XYPoint)

w, h: Int
area: Int
description: String

Shape

Rectangle

Square

Upcast to Shape

Example: Upcasting

�13COSC346 Lecture 6, 2018

O
O

P

XYPoint

x, y: Int

init(x: Int,y: Int)

Shape
position: XYPoint

translate(trans: XYPoint)

Rectangle:Shape

position: XYPoint

translate(trans: XYPoint)

w, h: Int
area: Int
description: String

Square:Rectangle:Shape

position: XYPoint

translate(trans: XYPoint)

w, h: Int
area: Int
description: String

Shape

Rectangle

Square

Upcast to Rectangle

Note that the upcast object will
still execute the overridden (and
not the parent’s) method

Downcasting

�14COSC346 Lecture 6, 2018

Sw
ift

func mightGiveArea(shape: Shape) {

 if shape is Rectangle {
 let rect = shape as! Rectangle
 print("Area is \(rect.area)")
 }
}

var shape: Shape = Shape(position: XYPoint(x: 2, y: 3))
var rect: Rectangle = Rectangle(position: XYPoint(x: 2, y: 3),
 width: 4,
 height: 2)
var sqr: Square = Square(position: XYPoint(x: 2, y: 3),
 side: 3)

mightGiveArea(shape)
mightGiveArea(rect)
mightGiveArea(sqr)

Forced
downcast of
Shape to
Rectangle

Prints nothing
Prints area
Prints area

Downcasting

�15COSC346 Lecture 6, 2018

Sw
ift

func mightGiveArea(shape: Shape) {

 if let rect = shape as? Rectangle {
 print("Area is \(rect.area)")
 }
}

var shape: Shape = Shape(position: XYPoint(x: 2, y: 3))
var rect: Rectangle = Rectangle(position: XYPoint(x: 2, y: 3),
 width: 4,
 height: 2)
var sqr: Square = Square(position: XYPoint(x: 2, y: 3),
 side: 3)

mightGiveArea(shape)
mightGiveArea(rect)
mightGiveArea(sqr)

Prints nothing
Prints area
Prints area

Extension

• Swift supports class extensions, where you can
add methods and properties to existing class

• Don’t need the source code of the original class
in order for the extension to work

�16COSC346 Lecture 6, 2018

Sw
ift

extension Rectangle {
 func perimeter() -> Int {
 return self.w*2+self.h*2
 }
}

var rect: Rectangle = Rectangle(position: XYPoint(x: 2, y: 3),
 width: 4,
 height: 2)
var sqr: Square = Square(position: XYPoint(x: 2, y: 3),
 side: 3)

print("Rectangle perimeter is: \(rect.perimeter())")
print("Square perimeter is: \(sqr.perimeter())")

Add a new method to
Class Rectangle

Use the new method
on a Rectangle object

Class Square automatically
inherits the extension

Design Pattern - Facade

• Provides a simple interface to a more
complex subsystem
• subsystem components can still be accessed

• can add functionality and not just 'pass through'

• Principle of Least Knowledge
• "talk only to your immediate friends"
• self, parameters, instances, components

!17COSC346 Lecture 6, 2018

O
O

P

class Computer {
 let processor: CPU
 let ram: Memory
 let hd: HardDrive

 init(){
 processor = CPU()
 ram = Memory()
 hd = HardDrive()
 }

 func start(){
 processor.freeze()
 ram.load(BOOT_ADDRESS,

hd.read(BOOT_SECTOR, SECTOR_SIZE))
 processor.jump(BOOT_ADDRESS)
 processor.execute()
 }
}

Sw
ift

To
ol

m
ak

er
Bu

ild
er

class CPU{
 func freeze() {}
 func jump(position: Int) {}
 func execute(){}
}

class Memory{
 func load(position: Int, data: Int8[]){}
}

class HardDrive{
 func read(position: Int, size: Int) -> Int8[]{
 return [Int8]
 }
}

let computer = Computer()
computer.start()

Facade in the real world?

!19COSC346 Lecture 6, 2018

Summary?

!20COSC346 Lecture 6, 2018

