Polymorphism

COSC346

Polymorphism

* Polymorphism refers to the ability of different
class objects to respond o the same method(s)

* From the perspective of the message sender, the
receiver can take different forms, as long as it
implements the same methods

* These methods may operate in different ways, but
provide analogous behaviour

* Often used to provide similar functionality for
different objects—the internal behaviour might
differ, but the external interface (and, to certain

extent, functionality) is the same
COSC346 Lecture 7, 2018

Polymorphism

Swift example: description method

* by convention this is a computed property returning
a string meant to describe object contents

* for some objects this might just be the object’s
address, for others, a description of the object state

* The statement:

func show(x: AnyObject) A
print(x.description);
}

* is meant to perform the same function—show @
string representation of the object—regardless of
the object type

COSC346 Lecture 7, 2018

Polymorphism

* Overloading—same method name, different
Implementations for different signatures

* Overriding—same method name, same signature,
different implementation for different position in
Inheritance hierarchy

* Upcasting—same object, different types as long
as its a parent type from inheritance hierarchy

* Polymorphic variable
* GGenerics
* Protocols

COSC346 Lecture 7, 2018

Polymorphic variable

* Can hold values of different types (type depends on
the context)

* Examples in Swift:

 self
° super
class Complex { class Fraction {
var real: Float var num: Int
var imag: Float var den: Int
init(real: Float, imag: Float) { init(num: Int, den: Int) {
self.real = real self.num = num
self.imag = imag self.den = den
I3 I3
b I3
self refers to an object self refers to an object
of type Complex of type Fraction

COSC346 Lecture 7, 2018 5

Dynamic versus static typing

* Static typing—data type derived from variable definition

* Compiler checks for type mismatches spotting potential bugs
* Type must be always specified

 Cannot compile the code with a type mismatch

* Dynamic typing—data type is derived from its value
* Type checking is deferred until run-time
* Allows generic code that works with any type

* Potential bugs might lurk in the code and not manifest until
specific run-time conditions

* C++ and Java are statically typed languages

* Objective C is dynamically type-checked, but allows
programmer to enforce static type-checking

« Swift is statically typed but “with a dynamic feel”: type can be
implicit wherever compiler can infer it

COSC346 Lecture 7, 2018

Static typing with dynamic flavour

X is an "Int’

var x = 3 €

X += 2

X += "2" o Binary operator ‘+=" cannot be applied to operands of type ‘Int” and “String’

x = "3" (1] Cannot assign a value of type ‘String” to type ‘Int’

/x is an ‘Int” type cast to ‘Any’

var x: Any = 3 €—

X += 2 @ Binary operator ‘+= cannot be applied to operands of type ‘Any’ and ‘Int’

X += "2" o Binary operator ‘+=" cannot be applied to operands of type ‘Any” and ‘String’
- 1 11

X = "3" o

x 1s a ‘String’ type cast to ‘Any’

COSC346 Lecture 7, 2018 7

Reflection/Introspection

* Sometimes there is a need to ask objects
about themselves at run-time

func += (left: inout Any, right: Int) |
if left is Int { g}?gf_3\;f_
let leftInt = left as! Int 74%%V%Whmim4
left = leftInt + right; T 3
} else if left is String {
let leftString = left as! String
left = leftString + "\(right)"

P

}
¥

var x: Any = 3
X += 2
print("x=\(x)")

var y: Any = "3"
y += 2
print ("y=\(y)")

COSC346 Lecture 7, 2018 8

Reflection/Introspection

* Can inherit from NSObject, which provides
more methods for infrospection;

class Fraction: NSObject {
private let num: Int; // Numerator
private let den: Int; // Denominator
init(num : Int, den : Int) {
self.num = num
self.den = den

& v " ;
{ Gt

Diiggpy 8

|
i e

e E’ \
EARal
-
nd
-
v

by

func add(f: Fraction) —> Fraction {
return Fraction(num: self.numxf.den+self.denxf.num,
den: self.denxf.den)
}

by

let f = Fraction(num: 2, den: 5)

if f.responds(to: #selector(Fraction.add(f:))){
print("Responds to add")

} else {
print("Does not respond to add")

¥

COSC346 Lecture 7, 2018 9

(Generics

Also referred to as parametric polymorphism

Generics provide abllity to operate on generic
data types

Class definition includes a generic type, which
allows one to create a library with unspecified
data type

The code that uses the library specifies the desired
data type in place of the generic one

References to the generic type inside the library
code become references to the specified data

Compiler checks for type consistency

COSC346 Lecture 7, 2018 10

Definition of
generic type

(Generics

class SimpleDictionary<T> {

typealias Entry = (key: Int, item: T)

var data: [Entry] = [] Usage? of Dictionary of
eneric :
subscript(key: Int) —> T? { & Strlngs
get {

for entry in data {
if entry.key == key {
return entry.item

type ‘

import Foundation J,
SimpleDictionary<String>()

var dictl =
= SimpleDictionary<Fraction>()

var dict2

}
} .
return nil chtlonary of
} . —
set(newItem) { Fractions
if let item = newItem {

for i in 0..<data.count {
if datal[il.key == key {
datal[i].item = item
return
¥
}
data.append(Entry(key: key, item: item))

dict1[2] = "item X"
dict1[435] = "item Y"

if let item = dict1[435] {
print(item)

¥
dict2[97] = Fraction(num: 1, den: 2)
dict2[21] = Fraction(num: 1, den: 3)

if let item = dict2[21] {
print(item)
b

COSC346 Lecture 7, 2018

11

Protocols

* Protocols are a feature of Swift which allow

enforcement of polymorphic behaviour

* A protocol definition
lists a group of
mandatory and
optional methods

protocol Equatable {
func ==(1lhs: Self,
¥

protocol Hashable :
var hashValue: Int
}

rhs: Self) —> Bool

Equatable {
{ get }

* In class definitfion you can specity the
protocols that the class will conform to

to these protocols

Will conform
class Fraction: Hashagﬁ

e, CustomStringConvertible {

COSC346 Lecture 7, 2018

12

Protocols

class Fraction: Hashable, CustomStringConvertible {

// Numerator
// Denominator

private let num: Int;
private let den: Int;

var decimal: Float {
return Float(num)/Float(den)
}

var description: String {

return "\ (self.num)/\(self.den)"
}
var hashValue: Int {

return numkden+den .
} Required by
. Hashable
init(num : Int, den : Int) {

self.num = num
self.den = den

¥

func ==(left: Fraction, right: Fraction) —> Bool {
if left.decimal == right.decimal {
return true
} else {
return false
}

, Required by
CustomStringConvertible

* The class must
Implement the
methods
specified in the
protocol if
subscribes 1o,
otherwise the
compiler will
complain

COSC346 Lecture 7, 2018

13

Generics with Protocol constraints

* Generic types can be constrained so that
they must conform to desired protocol(s)

import Foundation

class SimpleDictionary<U: Hashable, T> {
typealias Entry = (key: U, item: T)

var data: [Entry] = []
subscript(keyObject: U) —> T? {
get {
for entry in data {
if entry.key == keyObject {
return entry.item
b
¥
return nil
}
set(newItem) {
if let item = newItem {
for 1 in 0..<data.count {
if datalil.key == keyObject {

— Will work with types that
conform to the Hashable
protocol

var dictl = SimpleDictionary<Fraction, String>()

var k1 = Fraction(num: 1, den: 3)
var k2 = Fraction(num: 2, den: 5)
dict1l[kl] = "item X"
dictl[k2] = "item Y"

if let item = dictl1[kl] {
print(item)

datal[i].item = item 3
) return ‘
} Class must
data.append(Entry(key: keyObject, item: item))
, conform to
} } Hashable
COSC346 Lecture 7, 2018 prOtOCOI 14

Protocols as abstract classes

* |n Swift, protocols function a bit like abstract
classes:

class Fraction: Hashable, CustomStringConvertible {

* can be read as “Fraction inherits from
Hashable and Printable”

Equatable
* |n this interpretation, Swift ¢
allows multi-abstract-class Hashable Printable
inheritance (but still only A/v
single non-abstract-class - .=

inheritance)

COSC346 Lecture 7, 2018 15

Protocols as abstract classes Any

T

AnyObject
* AnyObject—protocol specifying implicit T
methods that work on all objects
* Every object conforms to this protocol

Fraction

/// The protocol to which all classes implicitly conform.

/// When used as a concrete type, all known “@objc” methods and

/// properties are available, as implicitly—-unwrapped-optional methods
/// and properties respectively, on each instance of "AnyObject .
@objc protocol AnyObject {

Iy

* Any—protocol that doesn’t specity any
methods

* Every type conforms to this protocol

/// The protocol to which all types implicitly conform
typealias Any = protocol<>

COSC346 Lecture 7, 2018 16

Protocols as abstract classes

* Example: AnyObject—works with object
Types On'y func show(x: AnyObject) {

print(x.description);

func isObject(x: AnyObject, sameIntanceAs y: AnyObject) —> Bool {
if x ===y {
return true
} else {
return false
}
¥

* Example: Any—works with objects as well as
value types

func show(x: Any) {
print(x.description); @ ‘Any’ does not have a member named ‘description’

func isObject(x: Any, sameIntanceAs y: Any) —> Bool {
if x ===y { @ Binary operator ‘===" cannot be applied to two ‘Any’ operands
return true
} else {
return false
b

b

COSC346 Lecture 7, 2018 17

Design Pattern - Factory

* Create instances of objects at runtime
* Usually all have a common interface

* Doesn't expose internal logic
* Default parameters

* Builder doesn't know what object will be
created

* Can add complexity

* Plastic foys — different moulds, same factory

COSC346 Lecture 7, 2018 18

Factory - Example

enum Shapes{

}
enum ShapeFactory{

switch s {
case .rectangle:

return Rectangle()
case .square:

return Square()
case .triangle:

return Triangle()
case .circle:

return Circle()

Toolmaker

}

case rectangle, square, triangle, circle

static func shape(for s:Shapes) -> Shape{

var myshape = ShapeFactory.shape(for: .circle)

Builder

COSC346 Lecture 7, 2018

class Shape{}

class Rectangle : Shape{}
class Square : Rectangle{}
class Triangle: Shape{}
class Circle: Shape{}

Specific Shape
(/ selected by

user, and not
Builder!

Factory in the real world?

COSC346 Lecture 7, 2018

20

Summary?

COSC346 Lecture 7, 2018

21

