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Life cycle of an object

• Create a reference pointer 
• Allocate memory for the object  
• Initialise internal data 
• Do stuff 
• Destroy the object 
• Release memory
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Constructors and destructors

• Constructor is a method that creates an object 
instance 
• Allocates memory for instance data 
• May initialise instance variables 
• Usually can be overloaded to accept parameters for 

initialisation 
• Associated with the new operator 

• Destructor is a method that deletes an object 
instance  
• Releases any memory allocated in the constructors (or 

during lifetime of the object) 
• Associated with the delete operator
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What is memory management

• Memory management is recycling for your 
program 
• Each object takes memory in the computer 
• When you finish with an object, you can remove 

it to re-use the space 
• If objects are never removed, memory fills up 

and the program can crash
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What is memory management

• These days memory management is done 
behind the scenes by the compiler or 
garbage collector 

• Understanding memory management will 
allow you to write more efficient code, in 
terms of memory usage and execution time
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The stack and the heap

• When your program starts, it gets two areas 
of memory that it can use: 
•A stack, typically used for arguments and local 

variables within functions and methods. 
•A heap, used for objects and large/persistent 

data structures. 
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The stack—local scope
• The stack is a part of memory that is 

managed Last-In-First-Out. 
• To allocate / deallocate memory you 

either “push” things onto the stack, or 
“pop” them off. 

• The stack is most often used to contain 
local variables, arguments and return 
values for function/method calls. 
• All of this is done automatically for you. 

• The stack can be used up, in which 
case you have “stack overflow,” 
which generally crashes your program 
in unpredictable ways.
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The heap—global scope

• The heap is a part of memory that is 
managed independent of program flow 
• You can add and remove things from the heap 

in any order from anywhere within your program 

• Whenever you allocate a new object, it is 
added to the heap
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adding a Fraction object
 var x: Fraction = Fraction()
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Program Counter (PC)

Stack Pointer (SP)

CPU registers Instructions

Data

Memory

Stack

Heap

• Memory regions: 
• Instructions—read only, stores 

program code 
• Data—read/write, stores variable 

data 
• Stack—local scope data 
• Heap—global scope data  

• CPU registers 
• PC—points to next instruction to 

execute 
• SP—points to the top of the stack
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Short term vs. long term storage

Stack is short term: 
• Fast allocation 
• Fast access  
• …but can be slow with 

large data structures (due 
to value copying) 

• Cleared automatically on 
function exit 

Heap is long term 
• Slow allocation—have to go 

through memory management 
• Slower access—data might not 

be contiguous (cache misses) 
• …but no need to copy large 

chunks of data (only references 
get copied, data stays in place) 

• Not obvious when to clear—is 
the data still needed?
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 Options for heap memory management

• Manual—e.g., C++ 
• Programmer explicitly frees up (deallocates) any memory that 

has been allocated on the heap and is no longer needed 
• Prone to bugs and memory leaks 

• Automatic at run-time (garbage collector)—e.g., Java 
• A special thread on the system scans through your program 

and removes objects that are no longer being used 
• Little chance of human error, but a bit of impact on execution

—the collector takes a bit of CPU time 
• Automatic at compile-time—e.g., Swift 

• Compiler figures out when objects are not referenced by any 
part of the program and places release calls appropriately  

• All these options require some method of keeping track 
of the number of references made to an object
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Reference counting

• In reference counting, each object keeps a retain 
count 
• The retain count tracks how many variables/objects hold a 

reference to that object 
• If you want to keep a valid reference to an object, you 

send it a retain message 
• Retain count increments 

• If you no longer need an object, you send it a release 
message 
• Retain count decrements 

• When retain count reaches 0, the object is deallocated 
• Since no one wants to reference the object, there is no 

point keeping it in memory
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Automatic Reference Counting (ARC)

These days compilers are so smart that: 
• They can figure out where to place retain 

and release calls 
• It’s all done automatically at compile time, 

so there is no need for the programmer to 
explicitly send retain and release messages 

• It works extremely well, except in one 
scenario…
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Retain cycles

• A retain cycle occurs 
when objects reference 
each other 
• Typically this occurs when 

a child references a parent 

• In this situation the retain count will never go 
to zero on these objects—they will never get 
deallocated, even if they are not being used
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Memory management

• All objects are allocated on the heap 
• Value variables such as integers, strings, etc., are 

allocated on the stack 
• Variables defined as some class type are references 
• References are stored on the stack, but the object data 

which they refer to is allocated on the heap 

• Compiler uses Automatic Reference Counting (ARC) 
• No need for the programmer to send retain and release 

messages, but … 
• it is the programmer’s responsibility to ensure that there 

are no retain cycles in the program!
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Initialisers & deinitialisers

• Initialisers are required for object instantiation 
and stored property initialisation 

• Deinitialisers are optional, as memory is 
released by ARC 
• … but sometimes 

useful for manually 
allocated resources
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class Shape { 
    var pos: CGPoint; 
     
    init(pos: CGPoint) { 
        self.pos = pos; 
    } 
     
    deinit { 
        //Shape specific de-initalisation 
    } 
} 

var s = Shape(pos: CGPoint(x: 0, y: 1))



Initialiser & deinitialiser hierarchy

• In Swift, all properties of the child must be 
initialised before the call to parent’s initialiser 
• Opposite of the convention in most languages, 

where the parent has to be initialised first 
• No explicit calls 

from child to 
parent’s deinit  
• Deinitialisers for 

child and parent 
will be invoked by 
the compiler
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class Circle : Shape { 
    var radius: Float 
     
    init(pos: CGPoint, radius: Float) { 
        self.radius = radius 
        super.init(pos: pos) 
    } 
     
    deinit { 
        //Circle specific de-initalisation 
    } 
} 

var c = Circle(pos: CGPoint(x: 0, y: 1),  
               radius: 3.0)



Weak and strong references

• Designed to combat retain cycle problems 
• Strong reference—affects object’s retain count  
• Retain count is 

incremented when 
strong reference is 
pointed to an object 

• Retain count is 
decremented when 
reference is 
destroyed or 
pointed elsewhere 

• Swift references are 
strong by default
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class Person { 
    let name: String 
    var apartment: Apartment? 

    init(name: String) { self.name = name } 
} 

class Apartment { 
    let number: Int 
    var tenant: Person? 
     
    init(number: Int) { self.number = number } 
} 

var john = Person(name: "John Appleseed") 
var number73 = Apartment(number: 73) 

john.apartment = number73 
number73.tenant = john



Weak and strong references

• Code on previous slide effects the graph of 
references illustrated below 

• When the john and number73 references are 
changed we get …
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Weak and strong references

• … a situation in which the interconnected 
Person instance and Apartment instance 
form a retain cycle 
• Neither will be deallocated—a memory leak
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Weak and strong references

• Weak reference—does not affect object’s 
retain count 
• The most common 

use of a weak 
reference is when 
a child references 
a parent 

• The graph of references for this code …
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class Person { 
    let name: String 
    var apartment: Apartment? 

    init(name: String) { self.name = name } 
} 

class Apartment { 
    let number: Int 
    weak var tenant: Person? 
     
    init(number: Int) { self.number = number } 
} 

var john = Person(name: "John Appleseed") 
var number73 = Apartment(number: 73) 

john.apartment = number73 
number73.tenant = john



Weak and strong references

• … means that the Person instance only has a 
reference count of one 

• Thus if we change the john reference …
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Weak and strong references

• The reference count of the Person instance 
will drop to zero and will be deallocated
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Weak and strong references

• Once deallocated the weak reference in the 
Apartment instance will become nil 

• … and when the number73 reference is 
changed, the Apartment will be deallocated
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Design Pattern - Flyweight

• Structural pattern 
• Minimise memory for similar objects 
• Share data 
• Intrinsic - internal 
• Extrinsic - external, immutable, shared 

• Tradeoff encapsulation and memory 
• Savings are a function of: 
• reduction of the number of instances 
• amount of intrinsic state 
• whether extrinsic state is computed or stored
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Flyweight - Example
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protocol Potion{
    func drink()
} 
class HealingPotion: Potion{
    func drink(){
        print("You feel healed.")
    }
} 
class HolyWaterPotion: Potion{
    func drink(){
        print("You feel blessed.")
    }
} 
class InvisibilityPotion: Potion{
    func drink(){
        print("You become invisible.")
    }
} 
enum PotionType{
    case HealingPotion,  

HolyWaterPotion, InvisibilityPotion
}

func usePotion(which: PotionType,  
 inventory: inout [PotionType:Int]){ 

    if let count = inventory[which]{
        var potion:Potion
        switch(which){
        case PotionType.HealingPotion:
            potion = HealingPotion()
            break
        case PotionType.HolyWaterPotion:
            potion = HolyWaterPotion()
            break
        case PotionType.InvisibilityPotion:
            potion = InvisibilityPotion()
            break
        }
        potion.drink()
        inventory[which] = count - 1
    }
}

var inventory = [PotionType:Int]()
inventory[PotionType.HealingPotion] = 5
inventory[PotionType.HolyWaterPotion] = 1
inventory[PotionType.InvisibilityPotion] = 2

usePotion(which: PotionType.HealingPotion,  
inventory: &inventory)

usePotion(which: PotionType.HolyWaterPotion,  
inventory: &inventory)

usePotion(which: PotionType.InvisibilityPotion,  
inventory: &inventory)
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Factory in the real world?
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Summary?
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