
Memory Management
COSC346

Life cycle of an object

• Create a reference pointer
• Allocate memory for the object
• Initialise internal data
• Do stuff
• Destroy the object
• Release memory

32COSC346 Lecture 8, 2018

O
O

P

Constructors and destructors

• Constructor is a method that creates an object
instance
• Allocates memory for instance data
• May initialise instance variables
• Usually can be overloaded to accept parameters for

initialisation
• Associated with the new operator

• Destructor is a method that deletes an object
instance
• Releases any memory allocated in the constructors (or

during lifetime of the object)
• Associated with the delete operator

33COSC346 Lecture 8, 2018

O
O

P

What is memory management

• Memory management is recycling for your
program
• Each object takes memory in the computer
• When you finish with an object, you can remove

it to re-use the space
• If objects are never removed, memory fills up

and the program can crash

34COSC346 Lecture 8, 2018

O
O

P

What is memory management

• These days memory management is done
behind the scenes by the compiler or
garbage collector

• Understanding memory management will
allow you to write more efficient code, in
terms of memory usage and execution time

35COSC346 Lecture 8, 2018

O
O

P

The stack and the heap

• When your program starts, it gets two areas
of memory that it can use:
•A stack, typically used for arguments and local

variables within functions and methods.
•A heap, used for objects and large/persistent

data structures.

36COSC346 Lecture 8, 2018

O
O

P

The stack—local scope
• The stack is a part of memory that is

managed Last-In-First-Out.
• To allocate / deallocate memory you

either “push” things onto the stack, or
“pop” them off.

• The stack is most often used to contain
local variables, arguments and return
values for function/method calls.
• All of this is done automatically for you.

• The stack can be used up, in which
case you have “stack overflow,”
which generally crashes your program
in unpredictable ways.

37COSC346 Lecture 8, 2018

local
variables

method
arguments

return
value

stack pointer
during execution

stack pointer
after return

O
O

P

The heap—global scope

• The heap is a part of memory that is
managed independent of program flow
• You can add and remove things from the heap

in any order from anywhere within your program

• Whenever you allocate a new object, it is
added to the heap

38COSC346 Lecture 8, 2018

adding a Fraction object
 var x: Fraction = Fraction()

O
O

P

Program Counter (PC)

Stack Pointer (SP)

CPU registers Instructions

Data

Memory

Stack

Heap

• Memory regions:
• Instructions—read only, stores

program code
• Data—read/write, stores variable

data
• Stack—local scope data
• Heap—global scope data

• CPU registers
• PC—points to next instruction to

execute
• SP—points to the top of the stack

39COSC346 Lecture 8, 2018

O
O

P

Memory

Short term vs. long term storage

Stack is short term:
• Fast allocation
• Fast access
• …but can be slow with

large data structures (due
to value copying)

• Cleared automatically on
function exit

Heap is long term
• Slow allocation—have to go

through memory management
• Slower access—data might not

be contiguous (cache misses)
• …but no need to copy large

chunks of data (only references
get copied, data stays in place)

• Not obvious when to clear—is
the data still needed?

310COSC346 Lecture 8, 2018

O
O

P

 Options for heap memory management

• Manual—e.g., C++
• Programmer explicitly frees up (deallocates) any memory that

has been allocated on the heap and is no longer needed
• Prone to bugs and memory leaks

• Automatic at run-time (garbage collector)—e.g., Java
• A special thread on the system scans through your program

and removes objects that are no longer being used
• Little chance of human error, but a bit of impact on execution

—the collector takes a bit of CPU time
• Automatic at compile-time—e.g., Swift

• Compiler figures out when objects are not referenced by any
part of the program and places release calls appropriately

• All these options require some method of keeping track
of the number of references made to an object

311COSC346 Lecture 8, 2018

O
O

P

Reference counting

• In reference counting, each object keeps a retain
count
• The retain count tracks how many variables/objects hold a

reference to that object
• If you want to keep a valid reference to an object, you

send it a retain message
• Retain count increments

• If you no longer need an object, you send it a release
message
• Retain count decrements

• When retain count reaches 0, the object is deallocated
• Since no one wants to reference the object, there is no

point keeping it in memory
312COSC346 Lecture 8, 2018

O
O

P

Automatic Reference Counting (ARC)

These days compilers are so smart that:
• They can figure out where to place retain

and release calls
• It’s all done automatically at compile time,

so there is no need for the programmer to
explicitly send retain and release messages

• It works extremely well, except in one
scenario…

313COSC346 Lecture 8, 2018

O
O

P

Retain cycles

• A retain cycle occurs
when objects reference
each other
• Typically this occurs when

a child references a parent

• In this situation the retain count will never go
to zero on these objects—they will never get
deallocated, even if they are not being used

314COSC346 Lecture 8, 2018

O
O

P

Memory management

• All objects are allocated on the heap
• Value variables such as integers, strings, etc., are

allocated on the stack
• Variables defined as some class type are references
• References are stored on the stack, but the object data

which they refer to is allocated on the heap

• Compiler uses Automatic Reference Counting (ARC)
• No need for the programmer to send retain and release

messages, but …
• it is the programmer’s responsibility to ensure that there

are no retain cycles in the program!

315COSC346 Lecture 8, 2018

Sw
ift

Initialisers & deinitialisers

• Initialisers are required for object instantiation
and stored property initialisation

• Deinitialisers are optional, as memory is
released by ARC
• … but sometimes

useful for manually
allocated resources

316COSC346 Lecture 8, 2018

Sw
ift

class Shape {
 var pos: CGPoint;

 init(pos: CGPoint) {
 self.pos = pos;
 }

 deinit {
 //Shape specific de-initalisation
 }
}

var s = Shape(pos: CGPoint(x: 0, y: 1))

Initialiser & deinitialiser hierarchy

• In Swift, all properties of the child must be
initialised before the call to parent’s initialiser
• Opposite of the convention in most languages,

where the parent has to be initialised first
• No explicit calls

from child to
parent’s deinit
• Deinitialisers for

child and parent
will be invoked by
the compiler

317COSC346 Lecture 8, 2018

Sw
ift

class Circle : Shape {
 var radius: Float

 init(pos: CGPoint, radius: Float) {
 self.radius = radius
 super.init(pos: pos)
 }

 deinit {
 //Circle specific de-initalisation
 }
}

var c = Circle(pos: CGPoint(x: 0, y: 1),
 radius: 3.0)

Weak and strong references

• Designed to combat retain cycle problems
• Strong reference—affects object’s retain count
• Retain count is

incremented when
strong reference is
pointed to an object

• Retain count is
decremented when
reference is
destroyed or
pointed elsewhere

• Swift references are
strong by default

318COSC346 Lecture 8, 2018

Sw
ift

class Person {
 let name: String
 var apartment: Apartment?

 init(name: String) { self.name = name }
}

class Apartment {
 let number: Int
 var tenant: Person?

 init(number: Int) { self.number = number }
}

var john = Person(name: "John Appleseed")
var number73 = Apartment(number: 73)

john.apartment = number73
number73.tenant = john

Weak and strong references

• Code on previous slide effects the graph of
references illustrated below

• When the john and number73 references are
changed we get …

319COSC346 Lecture 8, 2018

Sw
ift

Weak and strong references

• … a situation in which the interconnected
Person instance and Apartment instance
form a retain cycle
• Neither will be deallocated—a memory leak

320COSC346 Lecture 8, 2018

Sw
ift

Weak and strong references

• Weak reference—does not affect object’s
retain count
• The most common

use of a weak
reference is when
a child references
a parent

• The graph of references for this code …
321COSC346 Lecture 8, 2018

Sw
ift

class Person {
 let name: String
 var apartment: Apartment?

 init(name: String) { self.name = name }
}

class Apartment {
 let number: Int
 weak var tenant: Person?

 init(number: Int) { self.number = number }
}

var john = Person(name: "John Appleseed")
var number73 = Apartment(number: 73)

john.apartment = number73
number73.tenant = john

Weak and strong references

• … means that the Person instance only has a
reference count of one

• Thus if we change the john reference …

322COSC346 Lecture 8, 2018

Sw
ift

Weak and strong references

• The reference count of the Person instance
will drop to zero and will be deallocated

323COSC346 Lecture 8, 2018

Sw
ift

Weak and strong references

• Once deallocated the weak reference in the
Apartment instance will become nil

• … and when the number73 reference is
changed, the Apartment will be deallocated

324COSC346 Lecture 8, 2018

Sw
ift

Design Pattern - Flyweight

• Structural pattern
• Minimise memory for similar objects
• Share data
• Intrinsic - internal
• Extrinsic - external, immutable, shared

• Tradeoff encapsulation and memory
• Savings are a function of:
• reduction of the number of instances
• amount of intrinsic state
• whether extrinsic state is computed or stored

!25COSC346 Lecture 8, 2018

Flyweight - Example

!26COSC346 Lecture 8, 2018

protocol Potion{
 func drink()
}
class HealingPotion: Potion{
 func drink(){
 print("You feel healed.")
 }
}
class HolyWaterPotion: Potion{
 func drink(){
 print("You feel blessed.")
 }
}
class InvisibilityPotion: Potion{
 func drink(){
 print("You become invisible.")
 }
}
enum PotionType{
 case HealingPotion,

HolyWaterPotion, InvisibilityPotion
}

func usePotion(which: PotionType,
 inventory: inout [PotionType:Int]){

 if let count = inventory[which]{
 var potion:Potion
 switch(which){
 case PotionType.HealingPotion:
 potion = HealingPotion()
 break
 case PotionType.HolyWaterPotion:
 potion = HolyWaterPotion()
 break
 case PotionType.InvisibilityPotion:
 potion = InvisibilityPotion()
 break
 }
 potion.drink()
 inventory[which] = count - 1
 }
}

var inventory = [PotionType:Int]()
inventory[PotionType.HealingPotion] = 5
inventory[PotionType.HolyWaterPotion] = 1
inventory[PotionType.InvisibilityPotion] = 2

usePotion(which: PotionType.HealingPotion,
inventory: &inventory)

usePotion(which: PotionType.HolyWaterPotion,
inventory: &inventory)

usePotion(which: PotionType.InvisibilityPotion,
inventory: &inventory)

To
ol

m
ak

er
Bu

ild
er

Factory in the real world?

!27COSC346 Lecture 8, 2018

Summary?

!28COSC346 Lecture 8, 2018

