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Coupling

• Coupling describes how much different 
components of a system, such as objects in a 
program, depend on each other 
• For example, the relationship between classes 

• Examples of coupling include: 
• Internal data coupling—direct access from one class 

to an instance variable of another class 
• Global data coupling—dependency on global 

variables 
• Sequence coupling—order of operation is vital, but 

not implicit in the class implementation
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Cohesion

• Cohesion describes how well components, such as 
instance variables of the class, belong together 
• e.g., the relationship between internal elements of a class 

• Examples of cohesion: 
• Coincidental cohesion—elements of a class are grouped 

for no apparent reason 
• Logical cohesion—logical connection, no actual 

connection between data nor control 
• Temporal cohesion—elements that must be used at 

approximately the same time 
• Data cohesion—many elements serve to implement one 

data abstraction
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Object Interconnection

• Coupling and cohesion relate to the way you 
design your class infrastructure 
• Want to minimise coupling and maximise cohesion 

• Loose coupling: 
• Objects don’t need to know much about each 

other to interact 
• Changes in one class are less likely to affect other 

classes 
• High cohesion: 
• Easier to use classes that have single, clear purpose 
• Well modularised code is straightforward to maintain
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Visibility

• Visibility has to do with what data/methods 
are accessible/available to the class user 
and what is hidden 

• You can control visibility by declaring 
instance variables and/or methods as: 
• Public—class user has access 
• Internal—only accessible within same module 
• Private—only accessible from within same file 

• Reducing visibility tends to reduce coupling
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Visibility

• In Swift functions, 
classes, methods, 
and properties 
can be made: 
• open 
• public 
• internal 
• fileprivate 
• private
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public class GameObject { 
  // Private 
  private var _renderActions: [SKAction] = []      
  private var _collider: Collider?  
  // Internal 
  var scene: Scene? 
  var parent: GameObject? 
  var children: [GameObject] = [] 
  var render: SKNode? 
  var destroyMe: Bool = false 
  // Public 
  public var position: CGPoint = CGPoint(x: 0, y: 0) 
  public var collider: Collider? { 
        get { 
            return self._collider 
        } 
        set(newCollider) { 
            if let collider = newCollider { 
                self._collider = collider 
                self.addChild(collider) 
            } 
        } 
  } 
}   



Callback

• A callback is a function that is passed as an 
argument to another function/method 

• Typically callbacks 
are functions with 
instructions for what 
needs to happen 
after an asynchronous 
event takes place 

• You can think of callbacks as plugins that 
extend the functionality of the caller object
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Callback Example
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// these lines are needed so the playground keeps running to let the
// callbacks complete
import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true 

// this is some operation that can take a long time. Something like Network
// IO. I've simulated it with a call to 'sleep'
func someReallyLongOperation(key: String){
    print("SRLO: \(key) - starting a long operation")
    sleep(10)
    print("SRLO: \(key) - finished a long operation")
}

print("starting operation")
someReallyLongOperation(key:"synchronous with no callback")
print("... back")

starting operation 
SRLO: synchronous with no callback - starting a long operation 
SRLO: synchronous with no callback - finished a long operation 
... back



Callback Example
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// depending on the design of the API, you may have to do this yourself
func someReallyLongOperationWithCallbacks(onDone: () -> Void, key: String){
    someReallyLongOperation(key:key)
    onDone()
}

func callback(){
    print("CB: in the callback")
}

print("starting operation")
someReallyLongOperationWithCallbacks(onDone: callback, key: "synchronous with callback")
print("... back")

starting operation 
SRLO: synchronous with callback - starting a long operation 
SRLO: synchronous with callback - finished a long operation 
CB: in the callback 
... back



Callback Example
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print("starting dispatch queue")
DispatchQueue.global(qos: .default).async {
    someReallyLongOperationWithCallbacks( 
      onDone: callback,   
      key: "asynchronous with callback" 
    )
}
print("... back")

starting dispatch queue 
... back 
SRLO: asynchronous with callback - starting a long operation 
SRLO: asynchronous with callback - finished a long operation 
CB: in the callback



Callback Example
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print("starting dispatch queue")
DispatchQueue.global(qos: .default).async {
    someReallyLongOperationWithCallbacks( 
      onDone: { 

print("this is another callback") 
      },  
      key: "asynchronous with callback")
}
print("... back")

starting dispatch queue 
... back 
SRLO: asynchronous with callback - starting a long operation 
SRLO: asynchronous with callback - finished a long operation 
this is another callback



Callback Example - Real World

• The URLSession class implements a dataTask 
method that returns a task handler, which can be 
‘resumed’ to initiate a URL data request 

• The completionHandler callback is executed when 
the data is received
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let url = URL(string: "http://cs.otago.ac.nz") 

func myCallback(data: Data?, response: URLResponse?, error: Error?) { 
    if let rcvdData = data { 
        if let dataStr = NSString(data: rcvdData as Data, encoding: 
                                    String.Encoding.utf8.rawValue) { 
            print(dataStr) 
        } 
    } 
} 

var session = URLSession.shared 
var task = session.dataTask(with: url!, completionHandler: myCallback) 
task.resume()



Selector Callback

• Methods are also referred to as selectors 
• Thread can invoke a selector of a target 

object and execute it in a new thread 
• The object that 

implements the 
selector 
callback must 
inherit from 
NSObject
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class Worker: NSObject { 
     
    func doWork() { 
        while true { 
            print("Work, work!") 
            Thread.sleep(forTimeInterval: 0.2) 
        } 
    } 
} 

let peon = Worker () 
let thread = Thread(target:peon,  
               selector:#selector(Worker.doWork),  
               object:nil) 
thread.start()



Delegation

• Another form of callback in Swift is delegation 
• A delegate is an object implementing a number of 

callback methods 
• Instead of registering each callback method, you 

register the delegate object 
• Given the delegate’s reference, the caller object can 

invoke various methods on the delegate object 
• “Delegate acts on behalf of the caller object” 
• Protocols are useful for delegation: you can specify 

the methods that the delegate must implement 
• The Cocoa Framework relies heavily on delegation
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Delegation
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When the time comes, 
call me and I’ll do 

whatever needs doing
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Delegation Example

• URLSession class can be instantiated with a delegate that provides 
methods that handle various events associated with the session  

• Delegate must conform to the URLSessionDataDelegate protocol 
• Delegate’s urlSession(session: URLSession, dataTask: 

URLSessionDataTask, didReceiveData: Data) method is 
invoked when URL request returns data
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let url = URL(string: "http://cs.otago.ac.nz") 

public class MyDelegate: NSObject, URLSessionDataDelegate { 
     
    public func urlSession(_ session: URLSession, 
                           dataTask: URLSessionDataTask, 
                           didReceive data: Data) { 
        if let dataStr = NSString(data: data, encoding: String.Encoding.utf8.rawValue) { 
            print(dataStr) 
        } 
    } 
} 

let delegateObj = MyDelegate() 

var session = URLSession(configuration: URLSessionConfiguration.default, 
                           delegate: delegateObj, 
                           delegateQueue: nil) 
var task = session.dataTask(with: url!) 
task.resume()



Design Pattern - Observer

• Behavioural pattern 
• Publish changes to object's state 
• Subscribers receive notifications 

• Two parts: Observer, Observable
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Design Pattern - Observer

• Behavioural pattern 
• Publish changes to object's state 
• Subscribers receive notifications 

• Two parts: Observer, Observable
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protocol Observer{
    func onChange()
}

protocol Observable{
    func addObserver(o: Observer)
    func removeObserver(o: Observer)
}



Property Observers
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class Person{
    var name:String {
        willSet{
            print("name will be changed from \(name) to \(newValue)")
        }
        didSet {
            print("name was changed from \(oldValue) to \(name)")
        }
    }
    init(name: String){
        self.name = name
    }
}

var person = Person(name: "John")
person.name = "Jack"

name will be changed from John to Jack
name was changed from John to Jack
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ift



Observer Example
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protocol Observer{
    func onChange(old: Any, new: Any)
}

class Person {
    var observers: [Observer] = []
    var name:String {
        didSet {
            for o in observers {
                o.onChange(old: oldValue, new: name)
            }
        }
    }
    // skipping init
    func addObserver(obs: Observer){
        self.observers.append(obs)
    }
}

class PersonNameChangeObserver: Observer{
    func onChange(old: Any, new: Any) {
        print("\(old) -> \(new)")
    }
}

var person = Person(name: "John")
var o = PersonNameChangeObserver()
person.addObserver(obs: o)
person.name = "Jack"
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Observer in the real world?
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Summary?
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