
Object interconnections
COSC346

Coupling

• Coupling describes how much different
components of a system, such as objects in a
program, depend on each other
• For example, the relationship between classes

• Examples of coupling include:
• Internal data coupling—direct access from one class

to an instance variable of another class
• Global data coupling—dependency on global

variables
• Sequence coupling—order of operation is vital, but

not implicit in the class implementation
22COSC346 Lecture 9, 2018

O
O

P

Cohesion

• Cohesion describes how well components, such as
instance variables of the class, belong together
• e.g., the relationship between internal elements of a class

• Examples of cohesion:
• Coincidental cohesion—elements of a class are grouped

for no apparent reason
• Logical cohesion—logical connection, no actual

connection between data nor control
• Temporal cohesion—elements that must be used at

approximately the same time
• Data cohesion—many elements serve to implement one

data abstraction
23COSC346 Lecture 9, 2018

O
O

P

Object Interconnection

• Coupling and cohesion relate to the way you
design your class infrastructure
• Want to minimise coupling and maximise cohesion

• Loose coupling:
• Objects don’t need to know much about each

other to interact
• Changes in one class are less likely to affect other

classes
• High cohesion:
• Easier to use classes that have single, clear purpose
• Well modularised code is straightforward to maintain

24COSC346 Lecture 9, 2018

O
O

P

Visibility

• Visibility has to do with what data/methods
are accessible/available to the class user
and what is hidden

• You can control visibility by declaring
instance variables and/or methods as:
• Public—class user has access
• Internal—only accessible within same module
• Private—only accessible from within same file

• Reducing visibility tends to reduce coupling
25COSC346 Lecture 9, 2018

O
O

P

Visibility

• In Swift functions,
classes, methods,
and properties
can be made:
• open
• public
• internal
• fileprivate
• private

26COSC346 Lecture 9, 2018

Sw
ift

public class GameObject {
 // Private
 private var _renderActions: [SKAction] = []
 private var _collider: Collider?
 // Internal
 var scene: Scene?
 var parent: GameObject?
 var children: [GameObject] = []
 var render: SKNode?
 var destroyMe: Bool = false
 // Public
 public var position: CGPoint = CGPoint(x: 0, y: 0)
 public var collider: Collider? {
 get {
 return self._collider
 }
 set(newCollider) {
 if let collider = newCollider {
 self._collider = collider
 self.addChild(collider)
 }
 }
 }
}

Callback

• A callback is a function that is passed as an
argument to another function/method

• Typically callbacks
are functions with
instructions for what
needs to happen
after an asynchronous
event takes place

• You can think of callbacks as plugins that
extend the functionality of the caller object

27COSC346 Lecture 9, 2018

O
O

P

When the time
comes, open and

follow these
instructions

Callback Example

28COSC346 Lecture 9, 2018

Sw
ift

// these lines are needed so the playground keeps running to let the
// callbacks complete
import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true

// this is some operation that can take a long time. Something like Network
// IO. I've simulated it with a call to 'sleep'
func someReallyLongOperation(key: String){
 print("SRLO: \(key) - starting a long operation")
 sleep(10)
 print("SRLO: \(key) - finished a long operation")
}

print("starting operation")
someReallyLongOperation(key:"synchronous with no callback")
print("... back")

starting operation
SRLO: synchronous with no callback - starting a long operation
SRLO: synchronous with no callback - finished a long operation
... back

Callback Example

29COSC346 Lecture 9, 2018

Sw
ift

// depending on the design of the API, you may have to do this yourself
func someReallyLongOperationWithCallbacks(onDone: () -> Void, key: String){
 someReallyLongOperation(key:key)
 onDone()
}

func callback(){
 print("CB: in the callback")
}

print("starting operation")
someReallyLongOperationWithCallbacks(onDone: callback, key: "synchronous with callback")
print("... back")

starting operation
SRLO: synchronous with callback - starting a long operation
SRLO: synchronous with callback - finished a long operation
CB: in the callback
... back

Callback Example

210COSC346 Lecture 9, 2018

Sw
ift

print("starting dispatch queue")
DispatchQueue.global(qos: .default).async {
 someReallyLongOperationWithCallbacks(
 onDone: callback,
 key: "asynchronous with callback"
)
}
print("... back")

starting dispatch queue
... back
SRLO: asynchronous with callback - starting a long operation
SRLO: asynchronous with callback - finished a long operation
CB: in the callback

Callback Example

211COSC346 Lecture 9, 2018

Sw
ift

print("starting dispatch queue")
DispatchQueue.global(qos: .default).async {
 someReallyLongOperationWithCallbacks(
 onDone: {

print("this is another callback")
 },
 key: "asynchronous with callback")
}
print("... back")

starting dispatch queue
... back
SRLO: asynchronous with callback - starting a long operation
SRLO: asynchronous with callback - finished a long operation
this is another callback

Callback Example - Real World

• The URLSession class implements a dataTask
method that returns a task handler, which can be
‘resumed’ to initiate a URL data request

• The completionHandler callback is executed when
the data is received

212COSC346 Lecture 9, 2018

Sw
ift

let url = URL(string: "http://cs.otago.ac.nz")

func myCallback(data: Data?, response: URLResponse?, error: Error?) {
 if let rcvdData = data {
 if let dataStr = NSString(data: rcvdData as Data, encoding: 
 String.Encoding.utf8.rawValue) {
 print(dataStr)
 }
 }
}

var session = URLSession.shared
var task = session.dataTask(with: url!, completionHandler: myCallback)
task.resume()

Selector Callback

• Methods are also referred to as selectors
• Thread can invoke a selector of a target

object and execute it in a new thread
• The object that

implements the
selector
callback must
inherit from
NSObject

213COSC346 Lecture 9, 2018

Sw
ift

class Worker: NSObject {

 func doWork() {
 while true {
 print("Work, work!")
 Thread.sleep(forTimeInterval: 0.2)
 }
 }
}

let peon = Worker ()
let thread = Thread(target:peon,
 selector:#selector(Worker.doWork),
 object:nil)
thread.start()

Delegation

• Another form of callback in Swift is delegation
• A delegate is an object implementing a number of

callback methods
• Instead of registering each callback method, you

register the delegate object
• Given the delegate’s reference, the caller object can

invoke various methods on the delegate object
• “Delegate acts on behalf of the caller object”
• Protocols are useful for delegation: you can specify

the methods that the delegate must implement
• The Cocoa Framework relies heavily on delegation

214COSC346 Lecture 9, 2018

Sw
ift

Delegation

215COSC346 Lecture 9, 2018

When the time comes,
call me and I’ll do

whatever needs doing

55
5-5

55
5

Sw
ift

Delegation Example

• URLSession class can be instantiated with a delegate that provides
methods that handle various events associated with the session

• Delegate must conform to the URLSessionDataDelegate protocol
• Delegate’s urlSession(session: URLSession, dataTask:

URLSessionDataTask, didReceiveData: Data) method is
invoked when URL request returns data

216COSC346 Lecture 9, 2018

Sw
ift

let url = URL(string: "http://cs.otago.ac.nz")

public class MyDelegate: NSObject, URLSessionDataDelegate {

 public func urlSession(_ session: URLSession,
 dataTask: URLSessionDataTask,
 didReceive data: Data) {
 if let dataStr = NSString(data: data, encoding: String.Encoding.utf8.rawValue) {
 print(dataStr)
 }
 }
}

let delegateObj = MyDelegate()

var session = URLSession(configuration: URLSessionConfiguration.default,
 delegate: delegateObj,
 delegateQueue: nil)
var task = session.dataTask(with: url!)
task.resume()

Design Pattern - Observer

• Behavioural pattern
• Publish changes to object's state
• Subscribers receive notifications

• Two parts: Observer, Observable

!17COSC346 Lecture 8, 2018

Design Pattern - Observer

• Behavioural pattern
• Publish changes to object's state
• Subscribers receive notifications

• Two parts: Observer, Observable

!18COSC346 Lecture 8, 2018

protocol Observer{
 func onChange()
}

protocol Observable{
 func addObserver(o: Observer)
 func removeObserver(o: Observer)
}

Property Observers

!19COSC346 Lecture 8, 2018

class Person{
 var name:String {
 willSet{
 print("name will be changed from \(name) to \(newValue)")
 }
 didSet {
 print("name was changed from \(oldValue) to \(name)")
 }
 }
 init(name: String){
 self.name = name
 }
}

var person = Person(name: "John")
person.name = "Jack"

name will be changed from John to Jack
name was changed from John to Jack

Sw
ift

Observer Example

!20COSC346 Lecture 8, 2018

protocol Observer{
 func onChange(old: Any, new: Any)
}

class Person {
 var observers: [Observer] = []
 var name:String {
 didSet {
 for o in observers {
 o.onChange(old: oldValue, new: name)
 }
 }
 }
 // skipping init
 func addObserver(obs: Observer){
 self.observers.append(obs)
 }
}

class PersonNameChangeObserver: Observer{
 func onChange(old: Any, new: Any) {
 print("\(old) -> \(new)")
 }
}

var person = Person(name: "John")
var o = PersonNameChangeObserver()
person.addObserver(obs: o)
person.name = "Jack"

To
ol

m
ak

er
Bu

ild
er

Observer in the real world?

!21COSC346 Lecture 8, 2018

Summary?

!22COSC346 Lecture 8, 2018

