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Definitions

• A pattern (keyword) is an ordered sequence of symbols. 

• Symbols of the pattern and the searched text are chosen 
from a predetermined finite set, called an alphabet (Σ)
– In general alphabet can be any finite set of symbols/letters

• In bioinformatics:
– DNA alphabet Σ = {A,C,G,T}, 
– RNA alphabet Σ = {A,C,G,U};
– protein alphabet Σ = {A,R,N,…V} (20 amino acids)
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Exact string searching or matching

• Much of data processing in bioinformatics involves in one way 
or another recognising certain patterns within DNA, RNA (1st

assignment) or protein sequences.

• String-matching consists of finding one, or more or generally 
all the occurrences of a string of length m (called a pattern or
keyword) within a text of the total length n characters.

• An example of an exact string search (match):
– Pat:                  EXAMPLE
– Txt: HERE IS A SIMPLE EXAMPLE
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Exact string search algorithms

Algorithm Preprocessing 
time Matching time

Naïve string search algorithm 
(brute force)

0 (no 
preprocessing)

average O(n+m), worst 
O(n m) 

Knuth-Morris-Pratt algorithm O(m) O(n)

Boyer-Moore algorithm O(m + |Σ|) O(n/m), O(n)

Rabin-Karp algorithm O(m) average O(n+m), worst 
O(n m)

Aho-Corasick algorithm (suffix 
trees) O(n) O(m+z)

• 35 algorithms with codes at http://www-igm.univ-mlv.fr/~lecroq/string/

z = number of matches
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Naïve string search (brute force)

• The most intuitive way is to slide a window of length m
(pattern) over the text (of length n) from left to right one 
letter at a time. 

• Within the window compare successive characters:

txt: ABCABCDABABCDABCDABDE
pat: BCD

6

Naïve string search (brute force)

• If there is not a copy of the whole pattern in the first m
characters of the text, we look if there’s a copy of the 
pattern starting at the second character of the text:

txt: ABCABCDABABCDABCDABDE
pat:  BCD
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Naïve string search (brute force)

• If there is not a copy of the pattern starting at the second 
character of the text, we look if there’s a copy of the 
pattern starting at the third character of the text, and so 
forth:

txt: ABCABCDABABCDABCDABDE
pat:   BCD
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Naïve string search (brute force)

• until we hit a match; then we continue in the same 
way along the text and count number of matches.

txt: ABCABCDABABCDABCDABDE
pat:     BCD

Match !
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Properties of the naïve search

• Can be used on-line (advantage)

• Usually takes O(n+m) steps – not so bad

• The inner loop finds a mismatch quickly and moves 
on the next position quickly without going through all 
the m steps

• Worst case scenario O(nm) when searching for aaab
in aaaaaaaaaaaaaaaaaaaaaaaab
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Knuth–Morris–Pratt algorithm
• Integer i denotes the position within the searched txt, 

which is the beginning of the prospective match for pat
• Integer j denotes the character currently under consideration 

in pat
• ‘-’ denotes a gap in the sequence

i: 01234567890123456789012
txt:ABC-ABCDAB-ABCDABCDABDE
pat:ABCDABD
j: 0123456
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Knuth–Morris–Pratt algorithm
• Slide a sliding window of length m (pattern) over the text (of 

length n) from left to right. 

• Within the window compare successive characters from left to 
right until a mismatch is hit. 

i: 01234567890123456789012
txt:ABC-ABCDAB-ABCDABCDABDE
pat:ABCDABD
j: 0123456
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Knuth–Morris–Pratt algorithm

• When a mismatch occurs, the pattern itself is used to determine
where to jump to the next meaningful position to continue, in
this case i = j = 4:

i: 01234567890123456789012
txt:ABC-ABCDAB-ABCDABCDABDE
pat:ABCDABD
j: 0123456
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Knuth–Morris–Pratt algorithm

• From the next meaningful position, i.e. i = 4, we proceed in the
same way;

• There is a nearly complete match ABCDAB when we hit a
mismatch again at pat[6] and txt[10].

i: 01234567890123456789012
txt:ABC-ABCDAB-ABCDABCDABDE
pat: ABCDABD
j: 0123456
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Knuth–Morris–Pratt algorithm

• We passed an "AB" which could be the beginning of a new
match, so we simply reset i = 8, j = 2 and continue
matching the current character from left to right within a window.

i: 01234567890123456789012
txt:ABC-ABCDAB-ABCDABCDABDE
pat: ABCDABD
j: 0123456
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Knuth–Morris–Pratt algorithm

• This search fails immediately, as the pat does not contain a gap,
so we return to the beginning of pat, by resetting j = 0, and
begin searching at i = 11 in the text.

i: 01234567890123456789012
txt:ABC-ABCDAB-ABCDABCDABDE
pat: ABCDABD
j: 0123456
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Knuth–Morris–Pratt algorithm

• So we have returned to the beginning of pat and begin
searching at i = 11, resetting j = 0.

• Once again we immediately hit upon a match "ABCDAB" but the
next character, 'C', does not match the final character 'D' of the
pat.

i: 01234567890123456789012
txt:ABC-ABCDAB-ABCDABCDABDE
pat: ABCDABD
j: 0123456
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Knuth–Morris–Pratt algorithm

• Thus we set i = 15, to start at the two-character string "AB",
set j = 2, in the pat, and continue matching from the current
position.

• This time we are able to complete the match, whose first
character is at txt[15].

i: 01234567890123456789012
txt:ABC-ABCDAB-ABCDABCDABDE
pat: ABCDABD
j: 0123456

Match ! 18

Properties of Knuth-Morris-Pratt algorithm

• Can be used on-line (advantage) like naïve search but it’s 
substantially improved.

• Time to find match is only O(n) with O(m) preprocessing time.

• Partial match table should allow not to match any letter of txt 
more than once.

• Can be modified to search for multiple patterns in a single 
search.
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Boyer-Moore algorithm

• is a particularly efficient string searching algorithm, and it 
has been the standard benchmark for the practical string 
searching 

• BM algorithm holds a window containing pat over txt, 
much as the naïve search does. This window moves from 
left to right, however, its improved performance is based 
around two clever ideas: 

1. Inspect the window from right to left.
2. Recognize the possibility of large shifts in the window 

without missing a match.
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Boyer-Moore algorithm

• By fetching the S underlying the last character of the 
pat we learn: 
– We are not standing on a match (because S isn't E). 
– We wouldn't find a match even if we slid the pattern right 

by 1 (because S isn't L), by 2 (because S isn't P), etc. 

pat: EXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE
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Boyer-Moore algorithm

• Since S doesn't occur in the pattern at all, we can slide the 
pattern to the right by its own length without missing a 
match. 

• This shift can be pre-calculated for every letter and stored 
in a table. This table is called a bad character shift table.

pat: EXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE
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Boyer-Moore algorithm

• Focus your attention on the right end of the pattern.  E is 
not P, L is not P, but P= P so let us shift the pat to the 
right to align it with the P in the txt:

pat: EXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE

pat: EXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE
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Boyer-Moore algorithm

• We have discovered that MPLE occurs in the txt, let us put it 
in front of the pat like this: 

pat: EXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE

pat: MPLEEXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE

24

Boyer-Moore algorithm

• Now we can shift the pattern all way down to align this 
discovered occurrence in the txt with its last occurrence in 
the pattern (which is partly imaginary), i.e.: 

pat: MPLEEXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE

pat: MPLEEXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE
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Boyer-Moore algorithm

• There are only seven terminal substrings of the pattern, so we 
can pre-compute all these shifts too and store them in a table. 
This is sometimes called the good suffix shift table. 

• In general, if the algorithm has a choice of more than one 
shifts, then it takes the largest one. 

pat: MPLEEXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE
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Boyer-Moore algorithm

• We've aligned the MPLE but focus on the end of the pattern.  
E is not P, L is not P, but P=P so let us shift the pat to the 
right to align it with the P in the txt:

pat: MPLEEXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE

pat: EXAMPLE
txt: HERE-IS-A-SIMPLE-EXAMPLE

Match !
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Boyer-Moore algorithm: properties

• Observe that we have found the pattern without looking at all 
of the characters. 

• Its speed derives from the fact that it can determine all 
occurrences of pat within txt without examining too many 
characters in txt. 

• In fact, its average performance is O(n / m), that is, it gets 
faster as the pattern gets longer. 

• We say the algorithm is “sublinear” in the sense that it 
generally looks at fewer characters than it passes.
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Rabin-Karp algorithm: hashing

• uses the naïve search method (i.e. sliding window) and 
substantially speeds up the testing of equality of the pattern to the 
substrings in the text by using hashing. 

• It is used for multiple pattern matching (in addition to single 
pattern matching), because it has the unique advantage of being 
able to find any one of k strings in O(n) time on average, 
regardless of the magnitude of k. 

• The key to performance is the efficient computation of hash
values of the successive substrings of the text.
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Rabin-Karp algorithm – hashing

• A hash function converts every string into a numerical value, 
called its hash value (code, sum), using for instance the ASCII 
value of characters.
– For example, hash(‘hello’) = 5.

• Algorithm exploits the fact that if two strings are equal, their hash 
values are also equal (there might be so-called hash collisions, 
though, that must be checked for letter by letter). 

• All we have to do is to compute the hash value of the pattern 
we're searching for, and then look for substrings with the same 
hash value within the text (and then check letter by letter). 

• Different variants of the algorithm compute hash values in 
different ways (adding, multiplying, etc.).
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Rabin-Karp algorithm: properties

• One popular and effective hash function treats every substring as a
number in some base, the base being usually a large prime.
– For example, if the substring is "hi" and the base b = 101, then

hash(‘hi’) = ‘h’*b^1 + ‘i’*b^0 = 104*101+105*1 = 10,609

• Rabin-Karp is inferior for single pattern searching to Boyer-Moore
algorithm because of its slow worst case behaviour.

• However, Rabin-Karp is an algorithm of choice for multiple pattern
search.
– That is, if we want to find many fixed length patterns in a text, say

of length k, we can create a simple variant of Rabin-Karp that
checks whether the hash of a given string in the text belongs to a set
of hash values of patterns we are looking for.
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Aho-Corasick algorithm

• Used for multiple pattern matching tasks

• Decription from the article and code by Tomas Petricek at 
http://www.codeproject.com/KB/recipes/ahocorasick.aspx

• The algorithm consists of two parts: 

• The first part is the building of the tree from keywords/patterns 
you want to search for, and the second part is searching the text 
for the keywords using the previously built tree (finite state 
machine, FSM). 
– FSM is a deterministic model of behaviour composed of a 

finite number of states and transitions between those states
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Aho-Corasick algorithm
• In the first phase of the tree building, keywords are added to 

the tree. (The root node is used only as a place holder and 
contains links to other letters. )

• Links created in this first step represents the goto function, 
which returns the next state when a character is matching.
– Example of the tree for keywords: his, hers, she
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Aho-Corasick algorithm
• The fail function is used when a character is not matching. 

• For example, in the text shis, the failure function is used to 
exit from the she branch to his branch after the first two 
characters (because the third character is not matching). 
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Aho-Corasick algorithm

• During the second phase, the BFS (breadth first search) 
algorithm is used for traversing through all the nodes. 
– At each stage, the node to be expanded is indicated by a marker
– In general all the nodes are expanded at a given depths before 

any nodes at the next level are expanded

Help: Find the tutorial on efficient string search with suffix 
trees written by Mark Nelson at 
http://marknelson.us/1996/08/01/suffix-trees/
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Aho-Corasick algorithm

• Assume that generalised suffix tree has been built for the set of 
patterns D = {S1, S2,..., SK} of total length n = | n1 | + | n2 | + ... + | nK |. 
All patterns have the same alphabet. You can search for patterns in 
such a way that: 

– Check if a pattern P of length m is a substring in O(m) time.
– Find the first occurrence of the patterns P1,...,Pq of total length m

as substrings in O(m) time.
– Find all z occurrences of the patterns P1,...,Pq of total length m as 

substrings in O(m + z) time.
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Conclusions

• Although data are memorized in various ways, text remains the 
main form to exchange information. 

• String-matching is a very important subject in the wider domain 
of text processing (i.e. keyword search), not just bioinformatics.

• In bioinformatics, the patterns in strands of DNA, RNA and 
proteins, have important biological meaning, e.g. they are 
promoters, enhancers, operators, genes, introns, exons, etc.

• Often these meaningful patterns undergo mutations at some 
points, therefore we include in the patterns the so-called 
wildcards, to replace some of the characters (as in the 
assignment).


