| COSC 348: Computing for Bioinformatics<br>Lecture 5:<br>Sequence Alignment – Global Alignment<br><i>Lubica Benuskova, Ph.D.</i><br><u>http://www.cs.otago.ac.nz/cosc348/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Sequence Alignment</li> <li>Sequence alignment is a way of arranging two or more sequences of characters to <i>identify regions of similarity</i> <ul> <li>b/c similarities may be a consequence of functional or evolutionary relationships between these sequences.</li> </ul> </li> <li>Another definition: Procedure for comparing two or more sequences by searching for a series of individual characters that are <i>in the same order</i> in those sequences <ul> <li>Pair-wise alignment: compare two sequences</li> <li>Multiple sequence alignment: compare &gt; 2 sequences</li> </ul> </li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Similarity versus identity</li> <li>In the process of evolution, from one generation to the next, and from one species to the next, the amino acid sequences of or DNA mutations. For example, the reduct through the action or DNA mutations. For example, the reduct through the action or DNA mutations. For example, the reduct through the action or DNA mutations. For example, the reduct through the action or DNA mutations. For example, the reduct through the action or DNA mutations. For example, the reduct through the action or DNA mutations. For example, the reduct through the action or DNA mutations. For example, the reduct through the action or DNA mutations. For example, the reduct the reduct through the action or DNA mutations. For example, the reduct the reduct through the action or DNA mutation.</li> <li>In one generation and possibly into <b>ACEINYCRD</b>.</li> <li>In one generation and possibly into <b>ACEINYCRD</b>.</li> <li>In one generation of evolutionary time.</li> <li>Note: a hydrophobic amino acid is more likely to stag hydrophobic than not, since replacing it with a hydrophilic residue could affect the folding and/or activity of the protect.</li> </ul> | <ul> <li>Sequence alignment: example</li> <li>Task: align abcdef with somehow similar abdgf</li> <li>Write second sequence below the first one <ul> <li>abcdef</li> <li>abdgf</li> </ul> </li> <li>Move sequences to give maximum match between them.</li> <li>Show characters that match using vertical bar.</li> </ul>                                                                                                                                                                                                                                                                                                |
| sequence alignment: example   abcdef   abdgf   The order to maximise the alignment, we insert gap between b and d in lower sequence to allow d and f to align abcdef ab-dgf ab-dgf Note e and g don't match                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Quantitative global alignments</li> <li>We are looking for an alignment, which <ul> <li>maximizes the number of base-to-base matches;</li> <li>if necessary to achieve this goal, inserts gaps in either sequence (a gap means a base-to-nothing match);</li> <li>the order of bases in each sequence must remain preserved and</li> <li>gap-to-gap matches are not allowed.</li> </ul> </li> <li>We need some scheme to evaluate the goodness of alignment</li> </ul>                                                                                                                                         |

| <ul> <li>Scoring scheme</li> <li>The scoring scheme consists of character <i>substitution scores</i> (i.e. score for each possible character replacement) plus penalties for gaps.</li> <li>The <i>alignment score</i> is the sum of substitution scores and gap penalties. The alignment score reflects goodness of alignment.</li> <li>From this slide on, we use the ideas and examples from the lecture of Dr. Vladimir Likić given at the 7th Melbourne Bioinformatics Course.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block>                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Real scoring schemes</li> <li>For DNA (pyrimidines and purines are mutually OK):</li> <li>C +2 +1 -1 -1<br/>T +1 +2 -1 -1<br/>A -1 -1 +2 +1<br/>G -1 -1 +1 +2</li> <li>Protein substitution matrices are significantly more complex than DNA scoring matrices.</li> <li>PAM, i.e. "Point Accepted Mutation" family (PAM250, PAM120, etc)</li> <li>BLOSUM, i.e. "BLOcks SUbstitution Matrix" family (BLOSUM62, BLOSUM50, etc.)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>                                                                                                                                                                                                                                                                                                                                                           |
| A       R       N       D       C       Q       E       G       H       1       L       K       M       F       P       S       T       W       Y       V         A       A       4       -1       -2       -2       0       -1       -1       0       -2       -1       -1       -1       -2       -1       1       0       -3       -2       0         R       -1       50       -2       -3       1       0       -2       0       -3       -2       2       -1       -1       -3       -2       -3       -2       1       1       -3       -2       -3       -2       1       1       -3       -3       -2       -1       -1       -3       -3       -2       1       0       -4       -3       -3       -2       1       0       -4       -3       -3       -1       0       -1       -1       -2       -1       -1       -2       -1       -1       -2       -1       -1       -2       -1       -1       -2       -1       -2       -2       -1       -2       -2       -1       -3       -2       -2< | <ul> <li>Gap penalties</li> <li>Constant gap penalty. Constant gap penalty means that any gap, whatever size it is, receives the constant negative penalty, -g. <ul> <li>The total number of gaps matters not their length.</li> <li>Minimizes the number of gaps.</li> </ul> </li> <li>Linear gap penalty. Linear gap penalty depends linearly on the size of a gap. Parameter, -g, is the penalty per unit length of a gap.</li> <li>The overall penalty for one large gap is the same as for many small gaps.</li> </ul> |

| Gap penalties – continuation                                                                                                                                               |                                                                                                                                                                        |                             | Ex     | haus             | stive         | align                 | men             | t: bru   | te fo  | orce  |       |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|------------------|---------------|-----------------------|-----------------|----------|--------|-------|-------|--------|
| • Affine gap penalty. In biological sequences, it is more likely that a one big gap of length 10 occurs in a sequence, than 10 small gaps of length 1.                     | • Having the scoring scheme we can proceed to generate and evaluate alignments:                                                                                        |                             |        |                  |               |                       |                 |          |        |       |       |        |
| - Therefore, affine gap penalties <i>favour longer gaps</i> over single gaps of the same total length.                                                                     | be                                                                                                                                                                     |                             | two    | sequ             | ences         | the l                 |                 |          |        |       |       |        |
| - They use a gap opening penalty, $o < 0$ , and a gap extension penalty, $e < 0$ , such that $ e  <  o $ , to encourage gap extension rather than gap introduction.        | • The number of possible global alignments between two sequences of length L is $2^{2L} / (\pi L)^{1/2}$ . For two sequences of 250 bases this is ~10 <sup>149</sup> . |                             |        |                  |               |                       |                 |          |        |       |       |        |
| - A gap of length L is then given a penalty $g = o + (L-1)e$ .                                                                                                             | • Pr                                                                                                                                                                   | actical                     | ly us  | eless.           |               |                       |                 |          |        |       |       |        |
| 13                                                                                                                                                                         |                                                                                                                                                                        |                             |        |                  |               |                       |                 |          |        |       |       | 14     |
| Needleman-Wunsch algorithm                                                                                                                                                 |                                                                                                                                                                        |                             |        |                  | Step          | 1: ini                | itialis         | ation    | L      |       |       |        |
| • We have two 2D matrices: the <i>score matrix</i> and the <i>traceback matrix</i> .                                                                                       | sc                                                                                                                                                                     | ore an                      | d trac | itialis<br>cebac | ation<br>k ma | , the 1s<br>trices, S | st row<br>Score | and 1    | st col |       |       |        |
| • The Needleman-Wunsch algorithm consists of 3 steps:                                                                                                                      |                                                                                                                                                                        | 1                           |        | 1                |               |                       |                 |          |        | 1     | 1     |        |
| - Initialisation of the score and the traceback matrices                                                                                                                   | Score                                                                                                                                                                  | •                           | s      | Е                | N             | D                     | Tr              |          | S      | Е     | N     | D      |
| - Calculation of scores and filling in the score and traceback matrices                                                                                                    |                                                                                                                                                                        | 0                           | -10    | -20              | -30           | -40                   |                 | done     | left   | left  | left  | left   |
| - Inferring the alignment from the traceback matrix                                                                                                                        | A                                                                                                                                                                      | -10                         | ?      |                  |               |                       | A               | up       | ?      |       |       |        |
| • In the example we align 2 sequences of amino acids SEND and AND                                                                                                          | N                                                                                                                                                                      | -20                         |        |                  |               |                       | N               | up       |        |       |       |        |
| with the BLOSUM62 substitution matrix and the constant gap penalty $g = -10$ .                                                                                             | D                                                                                                                                                                      | -30                         |        |                  |               |                       | D               | up       |        |       |       | Ţ      |
| 15                                                                                                                                                                         | Т                                                                                                                                                                      | he ne                       | xt ste | ep is            | to de         | etermin               | ne S(2          | 2, 2) at | nd T(  | 2, 2) |       | 16     |
|                                                                                                                                                                            |                                                                                                                                                                        |                             |        |                  |               |                       |                 |          |        |       |       |        |
| Step 2: calculation of scores                                                                                                                                              |                                                                                                                                                                        |                             | :      | Step             | 2: c          | alcula                | tion            | of sc    | cores  |       |       |        |
| • The next step is to find the score value for an element $S(2, 2)$ .                                                                                                      |                                                                                                                                                                        |                             |        |                  |               | for lette<br>as r(i,  |                 |          |        |       |       | nalty. |
| <ul> <li>Rule: Value S(i, j) will become the maximum of:</li> <li>diag = S(i - 1, j - 1) + r(i, j) // r is char replacement score</li> <li>up = S(i - 1, j) + g</li> </ul> | -                                                                                                                                                                      | nus for<br>diag =<br>up = { | = S(1, | , 1)+            | r(A,          | S) = 0                | + 1 =           | 1 // thi | s is m | aximu | m sco | re     |
| - left = S(i, j-1) + g<br>S(i-1, j-1) S(i-1, j)                                                                                                                            |                                                                                                                                                                        | left =                      |        |                  |               |                       | S (1            | ,1)=0    | s (1   | 1,2)  |       |        |
| $\begin{array}{c} S(i,j-1) \\ & \\ \end{array} \\ \begin{array}{c} S(i,j) \\ & \\ \end{array} \\ \end{array}$                                                              |                                                                                                                                                                        |                             |        |                  |               |                       | s (2,           | 1)       | s      | (2,2) | =1    |        |

#### Step 2: filling in the score matrix

• We calculate the matrix S elements iteratively. Resulting matrix looks like this:

| Score |     | s   | Е   | N   | D   |
|-------|-----|-----|-----|-----|-----|
|       | 0   | -10 | -20 | -30 | -40 |
| A     | -10 | 1   | - 9 | -19 | -29 |
| N     | -20 | - 9 | -1  | -3  | -13 |
| D     | -30 | -19 | -11 | 2   | 3   |

## Step 3: deducing the best alignment

19

21

| • Traceback is the process of deduction of the best        | Result | ing alignmen | t: |
|------------------------------------------------------------|--------|--------------|----|
| alignment from the traceback                               | 1.     | D            |    |
| matrix.                                                    |        | D            |    |
|                                                            | 2.     | ND           |    |
| • The traceback always begins with the last cell, i.e. the |        | ND           |    |
| bottom rightmost cell in <b>Tr</b> .                       | 3.     | FND          |    |
|                                                            | 5.     |              |    |
| <ul> <li>Sequences are aligned</li> </ul>                  |        |              |    |
| backwards, i.e. from right to left.                        | 4.     | SEND         |    |
|                                                            |        | A-ND         |    |
|                                                            |        |              |    |

# Evaluation of the alignment

• Let us evaluate, i.e.score, all possible alignments :

SEND

| -AND | score = +1                       |
|------|----------------------------------|
| A-ND | score = +3 $\leftarrow$ the best |
| AN-D | score = -3                       |
| AND- | score = -8                       |

• Thus, the global alignment found by the NW algorithm is indeed the best one as we have confirmed by evaluating all possible alignments in this small example, where we can afford an exhaustive search.

### Step 2: filling in the traceback matrix

• The traceback items are indices of maximal scores. Both matrices look like this:

| Score |     | s   | Е   | N   | D   | Tr |      | s    | Е    | N    | D    |
|-------|-----|-----|-----|-----|-----|----|------|------|------|------|------|
|       | 0   | -10 | -20 | -30 | -40 |    | done | left | left | left | left |
| A     | -10 | 1   | -9  | -19 | -29 | A  | up   | diag | left | left | left |
| N     | -20 | -9  | -1  | -3  | -13 | N  | up   | diag | diag | diag | left |
| D     | -30 | -19 | -11 | 2   | 3   | D  | up   | up   | diag | diag | diag |

20

24

### Step 3: deducing the best alignment



- Up: a gap is introduced into the top sequence

| · · | Provide and all and and |
|-----|-------------------------|
|     | Resulting alignment     |

|      | S        | Е                               | N                                              | D                                                             | 1.                                                                           | D<br>D                                                                                |                                                                                                                                                                                                                                                                                                                                                                                        |
|------|----------|---------------------------------|------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| done | left     | left                            | left                                           | left                                                          |                                                                              | ND                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |
| up   | diag     | left                            | left                                           | left                                                          |                                                                              | ND                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |
| up   | diag     | diag                            | diag                                           | left                                                          | з.                                                                           | END                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                        |
| up   | up       | diag                            | diag                                           | diag                                                          |                                                                              | -ND                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                        |
|      | l        | I                               |                                                | l                                                             | 4.                                                                           | SEND<br>A-ND                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                     |
|      | up<br>up | done left<br>up diag<br>up diag | done left left<br>up diag left<br>up diag diag | done left left left<br>up diag left left<br>up diag diag diag | done left left left left<br>up diag left left left<br>up diag diag diag left | done left left left left 2.<br>up diag left left left 3.<br>up up diag diag diag diag | S     E     N     D       done     left     left     left       up     diag     left     left       up     diag     diag     diag       up     uag     diag     diag       up     diag     diag     left       up     diag     diag     left       up     diag     diag     left       up     up     diag     diag       up     up     diag     left       up     up     diag     left |

#### Conclusions

• The NW alignment is over the entire length of two sequences:

 the traceback starts from the lower right corner of the traceback matrix, and completes in the upper left cell of this matrix.

- The Needleman-Wunsch algorithm works in the same way regardless of the length or complexity of sequences and <u>guarantees</u> to find the best alignment.
- The Needleman-Wunsch algorithm is appropriate for finding the best alignment of two sequences which are

   (i) of similar length;
  - (ii) similar across their entire lengths.