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The problem

Matching string sequences is a problem that computer programmers face on a regular basis. 
This article discusses a data structure, called suffix tree, and shows how its characteristics can 
be used to attack difficult string matching problems.

Imagine that you've just been hired as a programmer working on a DNA sequencing 
project. Biologists are busy slicing and dicing viral genetic material, producing fragmented 
sequences of nucleotides. They send these sequences to your server, which is then expected to 
locate  the  sequences  in  a  database  of  genomes.  The  genome for  a  given  virus  can  have 
hundreds  of  thousands  of  nucleotide  bases,  and  you  have  hundreds  of  viruses  in  your 
database. You are expected to implement this as a client/server project that gives real-time 
feedback to the impatient biologists. What's the best way to go about it?

It  is  obvious  at  this  point  that  a  brute  force  string  search  is  going  to  be  terribly 
inefficient. This type of search would require you to perform a string comparison at every 
single nucleotide in every genome in your database. Testing a long fragment that has a high 
hit rate of partial matches would make your client/server system look like an antique batch 
processing machine. Your challenge is to come up with an efficient string matching solution.

The intuitive solution

Since the database that you are testing against is invariant (at least for a time being), 
preprocessing it to simplify the search seems like a good idea. One preprocessing approach is 
to build a search trie (Note: sometimes pronounced as ‘try’ to make distinction from tree). For 
searching through input text, a straightforward approach to a search trie yields a thing called a 
suffix trie. (The suffix trie is just one step away from my final destination, the suffix tree.) A 
trie is a type of tree that has |Σ| possible branches from each node, where |Σ| is the number of 
characters in the alphabet. The word 'suffix' is used in this case to refer to the fact that the trie 
contains all of the suffixes of a given block of text (perhaps a viral genome.)

Figure 1. The Suffix Trie Representing "BANANAS".
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Figure 1 shows a suffix trie for the word BANANAS. There are two important facts to note 
about this trie. First, starting at the root node, each of the suffixes of BANANAS is found in 
the trie, starting with BANANAS, ANANAS, NANAS, and finishing up with a solitary S. 
Second, because of this organization, you can search for any substring of the word by starting 
at the root and following matches down the tree until exhausted.

The second point is what makes the suffix trie such a nice construct. If you have an 
input text of length n, and a search string of length m, a traditonal brute force search will take 
as many as  nm character comparison to complete. Optimized searching techniques, such as 
the  Boyer-Moore  algorithm  can  guarantee  searches  that  require  no  more  than  m+n 
comparisons,  with  even  better  average  performance.  But  the  suffix  trie  demolishes  this 
performance by requiring just  m character comparisons, regardless of the length of the text 
being searched!

Remarkable as this might seem, it means I could determine if the word BANANAS 
was  in  the  collected  works  of  William  Shakespeare  by  performing  just  seven  character 
comparisons. Of course, there is just one little catch: the time needed to construct the trie.

The reason you don't hear much about the use of suffix tries is the simple fact that 
constructing one requires O(n2) time and space. This quadratic performance rules out the use 
of suffix tries where they are needed most: to search through long blocks of data.

Under the spreading suffix tree

A reasonable way past this dilemma was proposed by Edward McCreight in 1976 [1], when 
he published his paper on what came to be known as the suffix tree. The suffix tree for a 
given block of data retains the same topology as the suffix trie, but it eliminates nodes that 
have  only  a  single  descendant.  This  process,  known  as  path  compression,  means  that 
individual edges in the tree now may represent sequences of text instead of single characters.

Figure 2. The Suffix Tree representing "BANANAS".

Figure 2 shows what the suffix trie from Figure 1 looks like when converted to a suffix tree. 
You can see that the tree still has the same general shape, just far fewer nodes. By eliminating 
every node with just a single descendant, the count is reduced from 23 to 11.

In  fact,  the  reduction  in  the  number  of  nodes  is  such  that  the  time  and  space 
requirements for constructing a suffix tree are reduced from O(n2) to O(n). In the worst case, a 
suffix tree can be built with a maximum of 2n nodes, where n is the length of the input text. 
So for a one-time investment proportional to the length of the input text, we can create a tree 
that turbocharges our string searches. 

McCreight's original algorithm for constructing a suffix tree had a few disadvantages. 
Principle among them was the requirement that the tree be built in reverse order, meaning 
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characters were added from the end of the input. This ruled the algorithm out for on-line 
processing, making it much more difficult to use for applications such as data compression.

Twenty years later, Esko Ukkonen from the University of Helsinki came to the rescue 
with a  slightly  modified version of the  algorithm that  works from left  to  right.  Both my 
sample code and the descriptions that follow are based on Ukkonen's work, published in the 
September 1995 issue of Algorithmica [2].

For a  given string of text,  T,  Ukkonen's algorithm starts  with an empty tree,  then 
progressively adds each of the n prefixes of T to the suffix tree. For example, when creating 
the suffix tree for BANANAS, B is inserted into the tree, then BA, then BAN, and so on. 
When BANANAS is finally inserted, the tree is complete. 

Figure 3. Progressively Building the Suffix Tree.

Suffix tree mechanics

Adding a new prefix to the tree is done by walking through the tree and visiting each of the 
suffixes of the current tree. We start at the longest suffix (BAN in Figure 3), and work our 
way down to the shortest suffix, which is the empty string. Each suffix ends at a node that 
consists of one of these three types:

* A leaf node. In Figure 4, the nodes labelled 1,2, 4, and 5 are leaf nodes.
* An explicit node. The non-leaf nodes that are labelled 0 and 3 in Figure 4 are explicit nodes. 
They represent a point on the tree where two or more edges part ways.
* An implicit node. In Figure 4, prefixes such as BO, BOO, and OO all end in the middle of 
an edge. These positions are referred to as implicit nodes. They would represent nodes in the 
suffix trie,  but path compression eliminated them. As the tree is built,  implicit  nodes are 
sometimes converted to explicit nodes.

Figure 4. BOOKKEEPER after adding BOOK.

In Figure 4, there are five suffixes in the tree (including the empty string) after adding BOOK 
to  the  structure.  Adding the  next  prefix,  BOOKK to  the  tree  means visiting each of  the 
suffixes in the existing tree, and adding letter K to the end of the suffix.
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The first four suffixes, BOOK, OOK, OK, and K, all end at leaf nodes. Because of the path 
compression applied to suffix trees, adding a new character to a leaf node will always just add 
to the string on that node. It will never create a new node, regardless of the letter being added.

After all of the leaf nodes have been updated, we still need to add character 'K' to the 
empty string, which is found at node 0. Since there is already an edge leaving node 0 that 
starts with letter K, we don't have to do anything. The newly added suffix K will be found at 
node 0, and will end at the implicit node found one character down along the edge leading to 
node 2. The final shape of the resulting tree is shown in Figure 5.

Figure 5. The same tree after adding BOOKK.

Updating the tree in Figure 4 was relatively easy. We performed two types of updates: the 
first  was simply the extension of an edge,  and the second was an implicit  update,  which 
involved no work at all. 

Things get knotty

Figure 6. The Split and Add Update
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Adding BOOKKE to the tree shown in Figure 5 will  demonstrate  the two other types of 
updates. In the first type, a new node is created to split an existing edge at an implicit node, 
followed by the addition of a new edge. The second type of update consists of adding a new 
edge to an explicit node.

When adding BOOKKE to the tree in Figure 5, we once again start with the longest 
suffix, BOOKK, and work our way to the shortest,  the empty string. Updating the longer 
suffixes is trivial as long as we are updating leaf nodes. In Figure 5, the suffixes that end in 
leaf nodes are BOOKK, OOKK, OKK, and KK. The first tree in Figure 6 shows what the tree 
looks like after these suffixes have been updated using the simple string extension.

The first suffix in Figure 5 that doesn't terminate at a leaf node is K. When updating a 
suffix tree, the first non-leaf node is defined as the active point of the tree. All of the suffixes 
that are longer than the suffix defined by the active point will end in leaf nodes. None of the 
suffixes after this point will terminate in leaf nodes.

The suffix K terminates in an implicit node part way down the edge defined by KKE. 
When testing non-leaf nodes, we need to see if they have any descendants that match the new 
character being appended. In this case, that would be E.

A quick look at the first K in KKE shows that it only has a single descendant: K. So 
this means we have to add a descendent to represent Letter E. This is a two step process. First, 
we split the edge holding the arc so that it has an explicit node at the end of the suffix being 
tested. The middle tree in Figure 6 shows what the tree looks like after the split.

Once the edge has been split, and the new node has been added, you have a tree that 
looks like that in the third position of Figure 6. Note that the K node, which has now grown to 
be KE, has become a leaf node.

Updating an explicit node

After updating suffix K, we still have to update the next shorter suffix, which is the empty 
string. The empty string ends at explicit node 0, so we just have to check to see if it has a 
descendant that starts with letter E. A quick look at the tree in Figure 6 shows that node 0 
doesn't  have a descendant,  so another leaf node is added,  which yields the tree shown in 
Figure 7.

Figure 7. 

Generalizing the algorithm

By taking advantage of a few of the characteristics of the suffix tree, we can generate a fairly 
efficient algorithm. The first important trait is this: once a leaf node, always a leaf node. Any 
node that  we create  as a  leaf  will  never be given a  descendant,  it  will  only be extended 
through character concatenation. More importantly, every time we add a new suffix to the 
tree, we are going to automatically extend the edges leading into every leaf node by a single 
character. That character will be the last character in the new suffix.
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This makes management of the edges leading into leaf nodes easy. Any time we create 
a new leaf node, we automatically set its edge to represent all the characters from its starting 
point to the end of the input text. Even if we don't know what those characters are, we know 
they will be added to the tree eventually. Because of this, once a leaf node is created, we can 
just forget about it! If the edge is split, its starting point may change, but it will still extend all 
the way to the end of the input text. This means that we only have to worry about updating 
explicit and implicit nodes at the active point, which was the first non-leaf node. Given this, 
we would have to progress from the active point to the empty string, testing each node for 
update eligibility.

However, we can save some time by stopping our update earlier. As we walk through 
the suffixes, we will add a new edge to each node that doesn't have a descendant edge starting 
with the correct character. When we finally do reach a node that has the correct character as a 
descendant, we can simply stop updating. Knowing how the construction algorithm works, 
you can see that if you find a certain character as a descendant of a particular suffix, you are 
bound to also find it as a descendant of every smaller suffix.

The point where you find the first matching descendant is called the end point. The 
end point has an additional feature that makes it particularly useful. Since we were adding 
leaves to every suffix between the active point and the end point, we now know that every 
suffix longer than the end point is a leaf node. This means the end point will turn into the 
active point on the next pass over the tree!

By confining our updates to the suffixes between the active point and the end point, 
we cut way back on the processing required to update the tree. And by keeping track of the 
end point, we automatically know what the active point will be on the next pass. A first pass 
at  the  update  algorithm using this  information  might  look something like  this  (in  C-like 
pseudo code):

1. Update( new_suffix )

2. {
3.   current_suffix = active_point
4.   test_char = last_char in new_suffix

5.   done = false;

6.   while ( !done ) {

7.     if current_suffix ends at an explicit node {

8.       if the node has no descendant edge starting with test_char 
9.         create new leaf edge starting at the explicit node

10.       else
11.         done = true;
12.     } else {
13.       if the implicit node's next char isn't test_char {
14.        split the edge at the implicit node
15.        create new leaf edge starting at the split in the edge

16.       } else
17.         done = true;
18.     }
19.     if current_suffix is the empty string
20.       done = true; 
21.     else
22.        current_suffix = next_smaller_suffix( current_suffix )
23.   }
24.  active_point = current_suffix

25. } 
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The Suffix Pointer

The pseudo-code algorithm shown above is more or less accurate, but it glosses over one 
difficulty. As we are navigating through the tree, we move to the next smaller suffix via a call 
to  next_smaller_suffix(). This  routine  has  to  find  the  implicit  or  explicit  node 
corresponding to a particular suffix.

If we do this by simply walking down the tree until we find the correct node, our 
algorithm isn't going to run in linear time. To get around this, we have to add one additional 
pointer to the tree: the suffix pointer. The suffix pointer is a pointer found at each internal 
node. Each internal node represents a sequence of characters that start at the root. The suffix 
pointer points to the node that is the first suffix of that string. So if a particular string contains 
characters 0 through N of the input text, the suffix pointer for that string will point to the node 
that  is the termination point for the string starting at  the root that  represents characters 1 
through N of the input text.

Figure 8 shows the suffix tree for the string ABABABC. The first suffix pointer is 
found at the node that represents ABAB. The first suffix of that string would be BAB, and 
that is where the suffix pointer at ABAB points. Likewise, BAB has its own suffix pointer, 
which points to the node for AB.

Figure 8. The suffix tree for ABABABC with suffix pointers shown as dashed lines.

The suffix pointers are built at the same time the update to the tree is taking place. As I move 
from the active point to the end point, I keep track of the parent node of each of the new 
leaves I create. Each time I create a new edge, I also create a suffix pointer from the parent 
node of the last leaf edge I created to the current parent edge. (Obviously, I can't do this for 
the first edge created in the update, but I do for all the remaining edges.)

With the suffix pointers in place, navigating from one suffix to the next is simply a 
matter of following a pointer. This critical addition to the algorithm is what reduces it to an 
O(n) algorithm.

Tree houses

To help illustrate this article, I wrote a short program, stree2006, that reads in a string of text 
from  standard  input  and  builds  a  suffix  tree  using  fully  documented  C++ 
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(http://marknelson.us/attachments/1996/suffix-trees/stree2006.cpp). A second version, streed, 
has  extensive  debug  output  as  well  (http://marknelson.us/attachments/1996/suffix-
trees/streed2006.cpp).  They build properly with g++ 3.x, 4.x and Visual C++ 2003.

The most important data structure is the Edge object. The class definition for Edge is:

1.    class Edge {

2.     public :

3.         int first_char_index;

4.         int last_char_index;

5.         int end_node;

6.         int start_node;

7.         void Insert();

8.         void Remove();

9.         Edge();

10.         Edge( int init_first_char_index,
11.               int init_last_char_index,
12.               int parent_node );
13.         int SplitEdge( Suffix &s );
14.         static Edge Find( int node, int c );
15.         static int Hash( int node, int c );
16. }; 

 
Each time a new edge in the suffix tree is created, a new Edge object is created to represent it. 
The four data members of the object are defined as follows: 

first_char_index, last_char_index:  
Each  of  the  edges  in  the  tree  has  a  sequence  of  characters  from  the  input  text 

associated with it. To ensure that the storage size of each edge is identical, we just store two 
indices into the input text to represent the sequence.

start_node:

    The number of the node that represents the starting node for this edge. Node 0 is the 
root of the tree.

end_node:

    The number of the node that represents the end node for this edge. Each time an edge 
is created, a new end node is created as well. The end node for every edge will not change 
over the life of the tree, so this can be used as an edge id as well.

One of the most frequent tasks performed when building the suffix tree is to search for the 
edge emanating from a particular node based on the first character in its sequence. On a byte 
oriented computer, there could be as many as 256 edges originating at a single node. To make 
the search reasonably quick and easy, I store the edges in a hash table, using a hash key based 
on their starting node number and the first character of their substring. The  Insert() and 
Remove() member functions are used to manage the transfer of edges in and out of the hash 
table.

The second important data structure used when building the suffix tree is the Suffix 
object. Remember that updating the tree is done by working through all of the suffixes of the 
string currently stored in the tree, starting with the longest, and ending at the end point. A 
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Suffix is simply a sequence of characters that starts at node 0 and ends at some point in the 
tree.

It  makes  sense  that  we  can  then  safely  represent  any  suffix  by  defining  just  the 
position in the tree of its last character, since we know the first character starts at node 0, the 
root. The  Suffix object, whose definition is shown here, defines a given suffix using that 
system:

1. class Suffix {

2.     public :

3.         int origin_node;

4.         int first_char_index;

5.         int last_char_index;

6.         Suffix( int node, int start, int stop );

7.         int Explicit();

8.         int Implicit();

9.         void Canonize();

10. }; 

The  Suffix object defines the last character in a string by starting at a specific node, then 
following the string of characters in the input sequence pointed to by the first_char_index 
and last_char_index members. For example, in Figure 8, the longest suffix "ABABABC" 
would have an origin_node of 0, a first_char_index of 0, and a last_char_index of 6.

Ukkonen's algorithm requires that we work with these Suffix definitions in canonical 
form. The Canonize() function is called to perform this transformation any time a  Suffix 
object  is  modified.  The  canonical  representation  of  the  suffix  simply  requires  that  the 
origin_node in the  Suffix object be the closest parent to the end point of the string. This 
means that the suffix string represented by the pair (0, "ABABABC"), would be canonized by 
moving first to (1, "ABABC"), then (4, "ABC"), and finally (8,"").

When a suffix string ends on an explicit node, the canonical representation will use an 
empty string to define the remaining characters in the string. An empty string is defined by 
setting first_char_index to be greater than  last_char_index. When this is the case, we 
know that the suffix ends on an explicit node. If first_char_index is less than or equal to 
last_char_index, it means that the suffix string ends on an implicit node.

Given these data structure definitions, I think you will find the code in STREE.CPP to 
be a straightforward implementation of the Ukkonen algorithm. For additional clarity, use 
STREED.CPP to dump copious debug information out at runtime.

Acknowledgments: Jesper  Larsson  for  his  paper  on  the  1996  IEEE  Data  Compression 
Conference and providing me with sample code and pointers to Ukkonen's paper.
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