COSC 348: Computing for Bioinformatics Lecture 8: Introduction into probability theory <i>Lubica Benuskova</i> <u>http://www.cs.otago.ac.nz/cosc348/</u>	 Probability Probability summarizes our uncertainty about the world E.g., there is a probability of P = 0.6 that patient's toothache is caused by a cavity in the tooth. That is, we believe there is an 60% chance a patient with a toothache has a cavity. The rest P = 0.4 (40%) summarizes all other causes. Probability 0 ≤ P ≤ 1 corresponds to a degree of belief in the truth of a given proposition: P = 1 corresponds to a belief that a given sentence is <i>true</i> P = 0 corresponds to a belief that a given sentence is <i>false</i>
<section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	 Evidence Agent's beliefs depend on its observations to this date. These observations constitute the evidence, on which probability assertions are made Example: Before drawing a card from a shuffled pack, the agent assigns P = 1/52 to a drawn card to be the ace of spades. After looking at the drawn card, the probability of the same proposition is either = 0 or 1. Before the evidence is obtained we talk about the prior or unconditional probability; after the evidence is obtained we talk about posterior or conditional probability. Probabilities can change when more evidence is acquired.
 Drior (unconditional) probability Sefore the evidence is obtained we talk about prior or unconditional probability of a proposition <i>a</i>, written as <i>P</i>(<i>a</i>), that corresponds to use in prior to arrival of any evidence. Bernentary proposition is the assignment of value, e.g. <i>Weather</i> = sunny (Weather) denotes the vector of probability values for each idvividual state of the weather, the so-called prior probability sintbuton Ege, for the random variable <i>Weather</i> = (sunny, rainy, cloudy, snow), be prior probability distribution reads: P(<i>Weather</i>) = (0.72, 0.1, 0.08, 0.1) (probabilities are normalized, i.e. they sum to 1) 	 Desterior (conditional) probability After the evidence is obtained we talk about posterior probability e.g., P(cavity toothache) = 0.6, given that toothache is all I know Notation: P(a b), where a and b are (any) propositions, reads as "the probability of a, given all we know is b" If we know more, e.g., cavity is also given, then we (trivially) have P(cavity toothache < cavity) = 1. (Note: < is symbol for logical &) New evidence may be irrelevant, allowing simplification, e.g., P(cavity toothache < sunny) = P(cavity toothache) = 0.6.

Product rule

· Definition of posterior probability in terms of prior probabilities

$$P(a|b) = \frac{P(a \land b)}{P(b)}$$

• The last equation can be rewritten as the so-called product rule

$$P(a \wedge b) = P(a|b) P(b) = P(b|a) P(a)$$

- Meaning for a and b to be true, we need b to be true and we also need a to be true given b or we need a to be true and we also need b to be true given a
- Posterior probabilities are vehicles of probabilistic inference

Bayes' rule

- Main formula of probabilistic reasoning, derived from the product rule.
- Recall the definition of the product rule

$$P(a \land b) = P(a \mid b) P(b)$$
$$P(a \land b) = P(b \mid a) P(a)$$

• Equating the two right-hand sides, and dividing by P(a) we get the Bayes' rule $P(a \mid b) P(b)$

$$P(b \mid a) = \frac{P(a \mid b)P(b)}{P(a)}$$

Bayes' rule: example

- What is the conditional (posterior) probability that a patient has meningitis when his/her neck is stiff? *P*(*m* | *s*)=?
 - The doctor knows that meningitis causes a stiff neck in 50% of cases, that is $P(s \mid m) = 0.5$

9

- The doctor knows the prior probability of meningitis P(m) = 1/50000
- The doctor knows the prior probability of stiff neck P(s) = 1/20
- Applying the Bayes' rule: $P(m \mid s) = \frac{P(s \mid m) P(m)}{P(s)} = 0.0002$
- That is, we expect 1 in 5000 patients with stiff neck to have meningitis.

Conditional independence

- In reality, *a single cause can directly influences a number of effects*, all of which are conditionally independent given the cause.
- Thus, the full joint distribution can be then written as $\mathbf{P}(Cause \land Effect_1 \land ... \land Effect_n) = \alpha \mathbf{P}(Cause) \prod \mathbf{P}(Effect_i | Cause)$

Bayes' rule: cause and effect

• Bayes' rule for variables X and Y

$$\mathbf{P}(Y \mid X) = \frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}$$

• Can be rewritten as a rule for cause and effect

 $\mathbf{P}(Cause \mid Effect) = \frac{\mathbf{P}(Effect \mid Cause) \, \mathbf{P}(Cause)}{\mathbf{P}(Effect)}$

 Useful for assessing diagnostic probability from causal probability, because it is easier to know the conditional probabilities of effect given the cause.

Bayesian network: specification

- 1. A set of random variables makes up the **nodes**;
- 2. A set of directed links (arrows) connects pairs of nodes;
- 3. The meaning of an arrow: X_i has a direct influence upon X_i .
- If there is an arrow from node (variable) X_j to node (variable) X_ρ the variable X_j is said to be a parent of X_ρ.
- 5. Each node X_i has a conditional probability distribution $P(X_i | Parents(X_i))$ that quantifies the effect of the parents on the node.

12

8

Conditional probability table (CPT)

- A node with no parents has only one row with prior probabilities of each possible value of variable.
- · Each row of probabilities must sum to 1, but we often omit the column for negation because $P(\neg X) = 1 - P(X)$
- · Distribution of probabilities associated with each node with parents is called conditional probability table (CPT)
- Each row in CPT contains the conditional probability for a conditioning case (which is a combination of values for the parent nodes) and sums to 1.

Markov assumption

- Markov assumption: the current state depends only on a finite history of previous states (Markov process, Markov chain).
- Markov process of the k^{th} -order: Process, in which the current state depends on k previous states, and not on any earlier states, thus:

$$\mathbf{P}(\mathbf{X}_t \mid \mathbf{X}_{0:t-1}) \Longrightarrow \mathbf{P}(\mathbf{X}_t \mid \mathbf{X}_{t-1} \land \mathbf{X}_{t-2} \land ... \land \mathbf{X}_{t-k})$$

- Notation *j*:*k* will be used to denote the sequence of time steps from time *j* to time *k* (inclusive).

15

...

13

Example: model of language

- Let random variable (state) be the variable Word, which can have these discrete values:
 - Word = {From women's eyes this doctrine I derive: they sparkle still the right Promethean fire; they are the books, the arts, the academes, that show, contain and nourish all the world: else none at all in ought proves excellent. }
- Sequence of *n* words is denoted by $w_1 \dots w_n$, and w_t denotes the word at position t of the sequence.
- What is the probability of this particular sequence of words?

$$P(w_1 \wedge \ldots \wedge w_n) = ?$$

17

Markov models

- Markov models are statistical models that describe the change of states, i.e. random variable X, in time using probability.
- In an ordinary Markov model, the state is directly visible to the observer, and therefore the state transition probabilities are the only parameters.
- In general, the current state may depend on all previous states, thus:

$$\mathbf{P}(\mathbf{X}_{t} \mid \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_{t} \mid \mathbf{X}_{t-1} \land \mathbf{X}_{t-2} \land \dots \land \mathbf{X}_{0})$$

$$\cdots \longrightarrow \stackrel{(X_{l-2})}{\longrightarrow} \stackrel{(X_{l-1})}{\longrightarrow} \stackrel{(X_{l})}{\longrightarrow} \stackrel{(X_{l+1})}{\longrightarrow} \stackrel{(X_{l+2})}{\longrightarrow}$$

Markov process of the 1st order

- The 1st-order Markov process: the current state depends only on the previous state, and not on any earlier states.
- The laws describing how the state evolves over time are contained • entirely within the conditional distribution, called the transition model

$$\mathbf{P}(\mathbf{X}_t \,|\, \mathbf{X}_{0:t-1}) \Longrightarrow \mathbf{P}(\mathbf{X}_t \,|\, \mathbf{X}_{t-1})$$

• The topology of the Bayesian network for state transitions:

$$\xrightarrow{} (X_{t-2}) \xrightarrow{} (X_{t-1}) \xrightarrow{} (X_{t}) \xrightarrow{} (X_{t+1}) \xrightarrow{} (X_{t+2}) \xrightarrow{} \dots$$

Statistical model of language

• The expression for the probability of this sequence with the use of the product rule for n variables reads:

$$P(w_{1} \wedge ... \wedge w_{n}) = \prod_{t=1}^{n} P(w_{t} \mid w_{1} \wedge ... \wedge w_{t-1}) =$$

= $P(w_{n} \mid w_{1} \wedge ... \wedge w_{n-1})...P(w_{3} \mid w_{1} \wedge w_{2})P(w_{2} \mid w_{1})P(w_{1})$

· Most of these terms are very difficult to estimate or compute. Thus we have to simplify.

16

19

Trigram and other models

• Trigram model corresponds to

$$P(w_1...w_n) \approx \prod_{t=1}^n P(w_t \mid w_{t-1} \mid w_{t-2})$$

- For trigram and bigram models we must deal with *zero counts*. In these cases we use a small nonzero number or the process of *smoothing* gives a non-zero probability to such instances.
- Bi- and trigram models are sensitive only to a local context and local syntax, however they fail for long distance relationships.

20

• Grammar and syntax models exist that are better.