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Probability

• Probability summarizes our uncertainty about the world
– E.g., there is a probability of P = 0.6 that patient’s toothache is 

caused by a cavity in the tooth.
– That is, we believe there is an 60% chance a patient with a 

toothache has a cavity. 
– The rest P = 0.4 (40%) summarizes all other causes.

• Probability 0 ≤ P ≤ 1 corresponds to a degree of belief in the 
truth of a given proposition:
– P = 1 corresponds to a belief that a given sentence is true
– P = 0 corresponds to a belief that a given sentence is false 
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Random variable

• Random variable X: basic element of the probability theory. 
Describes the property of the world such that it assumes concrete 
values with some probability, i.e. the values of X are assigned with 
some probability.

• According to the set of all possible values:
– Boolean random variables: have the values 〈true, false〉. 

Example: Cavity
– Discrete random variables: exhaustive and countable domain of 

mutually exclusive values. Example: Nucleotide = 〈A, C, T, G〉
– Continuous random variables: values from the real numbers, 

either the entire line or some subset. Example: Height = 164cm
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Evidence

• Agent’s beliefs depend on its observations to this date.

• These observations constitute the evidence, on which probability 
assertions are made
– Example: Before drawing a card from a shuffled pack, the agent 

assigns   P = 1/52 to a drawn card to be the ace of spades. After 
looking at the drawn card, the probability of the same proposition is 
either = 0 or 1.

• Before the evidence is obtained we talk about the prior or 
unconditional probability; after the evidence is obtained we talk 
about posterior or conditional probability.

• Probabilities can change when more evidence is acquired. 4

Prior (unconditional) probability

• Before the evidence is obtained we talk about prior or unconditional 
probability of a proposition a, written as P(a), that corresponds to 
belief prior to arrival of any evidence.
– Elementary proposition is the assignment of value, e.g. Weather = sunny

• P(Weather) denotes the vector of probability values for each 
individual state of the weather, the so-called prior probability 
distribution

• E.g., for the random variable Weather = 〈sunny, rainy, cloudy, snow〉, 
the prior probability distribution reads: P(Weather) = 〈 0.72, 0.1, 
0.08, 0.1〉 (probabilities are normalized, i.e. they sum to 1)
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Posterior (conditional) probability

• After the evidence is obtained we talk about posterior probability
– e.g., P(cavity | toothache) = 0.6, given that toothache is all I know

• Notation: P(a | b), where a and b are (any) propositions, reads 
as “the probability of a, given all we know is b”

• If we know more, e.g., cavity is also given, then we (trivially) have
P(cavity | toothache ∧ cavity) = 1.   (Note: ∧ is symbol for logical &)

• New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity | toothache ∧ sunny) = P(cavity | toothache) = 0.6

6



Product rule

• Definition of posterior probability in terms of prior probabilities

• The last equation can be rewritten as the so-called product rule

– Meaning for a and b to be true, we need b to be true and we also need 
a to be true given b or we need a to be true and we also need b to be 
true given a

• Posterior probabilities are vehicles of probabilistic inference
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Bayes’ rule

• Main formula of probabilistic reasoning, derived from the 
product rule.

• Recall the definition of the product rule

• Equating the two right-hand sides, and dividing by P(a) we get 
the Bayes’ rule
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Bayes’ rule: example

• What is the conditional (posterior) probability that a patient has 
meningitis when his/her neck is stiff? P(m | s)=?

– The doctor knows that meningitis causes a stiff neck in 50% of cases, that is 
P(s | m) = 0.5

– The doctor knows the prior probability of meningitis P(m) = 1/50000
– The doctor knows the prior probability of stiff neck P(s) = 1/20 

• Applying the Bayes’ rule:

• That is, we expect 1 in 5000 patients with stiff neck to have 
meningitis.

9

0002.0
)(

)()|()|( ==
sP

mPmsPsmP

Bayes’ rule: cause and effect

• Bayes’ rule for variables X and Y

• Can be rewritten as a rule for cause and effect

• Useful for assessing diagnostic probability from causal probability, 
because it is easier to know the conditional probabilities of effect 
given the cause.
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Conditional independence

• In reality, a single cause can directly influences a number of 
effects, all of which are conditionally independent given the 
cause.

• Thus, the full joint distribution can be then written as
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Bayesian network: specification

1. A set of random variables makes up the nodes;

2. A set of directed links (arrows) connects pairs of nodes;

3. The meaning of an arrow: Xj has a direct influence upon Xi.

4. If there is an arrow from node (variable) Xj to node (variable) Xi, 
the variable Xj is said to be a parent of Xi;

5. Each node Xi has a conditional probability distribution P(Xi | 
Parents(Xi)) that quantifies the effect of the parents on the node.
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Conditional probability table (CPT)

• A node with no parents has only one row with prior 
probabilities of each possible value of variable.

• Each row of probabilities must sum to 1, but we often omit the 
column for negation because P(¬X) = 1 – P(X)

• Distribution of probabilities associated with each node with 
parents is called conditional probability table (CPT)

• Each row in CPT contains the conditional probability for a 
conditioning case (which is a combination of values for the 
parent nodes) and sums to 1.

13

Markov models

• Markov models are statistical models that describe the change of 
states, i.e. random variable X, in time using probability.

• In an ordinary Markov model, the state is directly visible to the 
observer, and therefore the state transition probabilities are the only 
parameters. 

• In general, the current state may depend on all previous states, thus:
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Markov assumption

• Markov assumption: the current state depends only on a finite 
history of previous states (Markov process, Markov chain).

• Markov process of the kth -order: Process, in which the current 
state depends on k previous states, and not on any earlier states, 
thus:

– Notation j:k will be used to denote the sequence of time steps 
from time j to time k (inclusive).
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Markov process of the 1st order

• The 1st-order Markov process: the current state depends only on the 
previous state, and not on any earlier states.

• The laws describing how the state evolves over time are contained 
entirely within the conditional distribution, called the transition model

• The topology of the Bayesian network for state transitions:
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Example: model of language

• Let random variable (state) be the variable Word, which can have 
these discrete values:
– Word = {From women's eyes this doctrine I derive: they 

sparkle still the right Promethean fire; they are the books, the 
arts, the academes, that show, contain and nourish all the world: 
else none at all in ought proves excellent. }

• Sequence of n words is denoted by w1 …wn, and wt denotes the word 
at position t of the sequence.

• What is the probability of this particular sequence of words?
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Statistical model of language

• The expression for the probability of this sequence with 
the use of the product rule for n variables reads:

• Most of these terms are very difficult to estimate or 
compute. Thus we have to simplify.
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Bigram model of language

• Bigram model is a Markov model of the 1st order.

• Calculation of transition probabilities: count the number of times 
each word pair occurs in a representative corpus, and use the 
counts to estimate the transitional conditional probabilities. 
– if “they” appears 1000 times and is followed by “are” 30 times 

then the estimate of the probability of transition is              
P(aret | theyt−1) = 30 / 1000 = 0.003.
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Trigram and other models

• Trigram model corresponds to

• For trigram and bigram models we must deal with zero counts. In 
these cases we use a small nonzero number or the process of 
smoothing gives a non-zero probability to such instances.

• Bi- and trigram models are sensitive only to a local context and 
local syntax, however they fail for long distance relationships.

• Grammar and syntax models exist that are better. 
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