COSC 348:

Computing for Bioinformatics

Lecture 8:

Introduction into probability theory

Lubica Benuskova

http://www.cs.otago.ac.nz/cosc348/

Probability

- Probability summarizes our uncertainty about the world
- E.g., there is a probability of $P=0.6$ that patient's toothache is caused by a cavity in the tooth.
- That is, we believe there is an 60% chance a patient with a toothache has a cavity.
- The rest $P=0.4(40 \%)$ summarizes all other causes.
- Probability $0 \leq P \leq 1$ corresponds to a degree of belief in the truth of a given proposition:
$-P=1$ corresponds to a belief that a given sentence is true
$-P=0$ corresponds to a belief that a given sentence is false

Random variable

- Random variable \boldsymbol{X} : basic element of the probability theory. Describes the property of the world such that it assumes concrete values with some probability, i.e. the values of X are assigned with some probability.
- According to the set of all possible values:
- Boolean random variables: have the values \langle true, false \rangle. Example: Cavity
- Discrete random variables: exhaustive and countable domain of mutually exclusive values. Example: Nucleotide $=\langle A, C, T, G\rangle$
- Continuous random variables: values from the real numbers, either the entire line or some subset. Example: Height $=164 \mathrm{~cm}$

Evidence

- Agent's beliefs depend on its observations to this date.
- These observations constitute the evidence, on which probability assertions are made
- Example: Before drawing a card from a shuffled pack, the agent assigns $P=1 / 52$ to a drawn card to be the ace of spades. After looking at the drawn card, the probability of the same proposition is either $=0$ or 1 .
- Before the evidence is obtained we talk about the prior or unconditional probability; after the evidence is obtained we talk about posterior or conditional probability.
- Probabilities can change when more evidence is acquired.

Prior (unconditional) probability

- Before the evidence is obtained we talk about prior or unconditional probability of a proposition a, written as $P(a)$, that corresponds to belief prior to arrival of any evidence.
- Elementary proposition is the assignment of value, e.g. Weather $=$ sunny
- $\mathbf{P}($ Weather $)$ denotes the vector of probability values for each individual state of the weather, the so-called prior probability distribution
- E.g., for the random variable Weather $=\langle$ sunny, rainy, cloudy, snow \rangle, the prior probability distribution reads: $\mathbf{P}($ Weather $)=\langle 0.72,0.1$, $0.08,0.1\rangle$ (probabilities are normalized, i.e. they sum to 1)

Posterior (conditional) probability

- After the evidence is obtained we talk about posterior probability - e.g., $P($ cavity \mid toothache $)=0.6$, given that toothache is all I know
- Notation: $P(a \mid b)$, where a and b are (any) propositions, reads as "the probability of a, given all we know is b "
- If we know more, e.g., cavity is also given, then we (trivially) have $P($ cavity \mid toothache \wedge cavity $)=1$. (Note: \wedge is symbol for logical \& $)$
- New evidence may be irrelevant, allowing simplification, e.g., $P($ cavity \mid toothache \wedge sunny $)=P($ cavity \mid toothache $)=0.6$

Product rule

- Definition of posterior probability in terms of prior probabilities

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)}
$$

- The last equation can be rewritten as the so-called product rule

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

- Meaning for a and b to be true, we need b to be true and we also need a to be true given b or we need a to be true and we also need b to be true given a
- Posterior probabilities are vehicles of probabilistic inference

Bayes' rule

- Main formula of probabilistic reasoning, derived from the product rule.
- Recall the definition of the product rule

$$
\begin{aligned}
& P(a \wedge b)=P(a \mid b) P(b) \\
& P(a \wedge b)=P(b \mid a) P(a)
\end{aligned}
$$

- Equating the two right-hand sides, and dividing by $P(a)$ we get the Bayes' rule

$$
P(b \mid a)=\frac{P(a \mid b) P(b)}{P(a)}
$$

Bayes' rule: cause and effect

- Bayes' rule for variables X and Y

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}
$$

- Can be rewritten as a rule for cause and effect

$$
\mathbf{P}(\text { Cause } \mid \text { Effect })=\frac{\mathbf{P}(\text { Effect } \mid \text { Cause }) \mathbf{P}(\text { Cause })}{\mathbf{P}(\text { Effect })}
$$

- Useful for assessing diagnostic probability from causal probability, because it is easier to know the conditional probabilities of effect given the cause.

Conditional independence

- In reality, a single cause can directly influences a number of effects, all of which are conditionally independent given the cause.
- Thus, the full joint distribution can be then written as
$\mathbf{P}\left(\right.$ Cause $^{\wedge}$ Effect $_{1} \wedge \ldots \wedge$ Effect $\left._{n}\right)=\alpha \mathbf{P}($ Cause $) \prod \mathbf{P}\left(\right.$ Effect $_{i} \mid$ Cause $)$

Bayesian network: specification

1. A set of random variables makes up the nodes;
2. A set of directed links (arrows) connects pairs of nodes;
3. The meaning of an arrow: X_{j} has a direct influence upon X_{i}.
4. If there is an arrow from node (variable) X_{j} to node (variable) X_{i}, the variable X_{j} is said to be a parent of X_{i};
5. Each node X_{i} has a conditional probability distribution $P\left(X_{i} \mid\right.$ $\operatorname{Parents}\left(X_{i}\right)$) that quantifies the effect of the parents on the node.

Conditional probability table (CPT)

- A node with no parents has only one row with prior probabilities of each possible value of variable.
- Each row of probabilities must sum to 1 , but we often omit the column for negation because $P(\neg X)=1-P(X)$
- Distribution of probabilities associated with each node with parents is called conditional probability table (CPT)
- Each row in CPT contains the conditional probability for a conditioning case (which is a combination of values for the parent nodes) and sums to 1 .

Markov assumption

- Markov assumption: the current state depends only on a finite history of previous states (Markov process, Markov chain).
- Markov process of the $k^{\text {th }}$-order: Process, in which the current state depends on k previous states, and not on any earlier states, thus:

$$
\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right) \Rightarrow \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1} \wedge \mathbf{X}_{t-2} \wedge \ldots \wedge \mathbf{X}_{t-k}\right)
$$

- Notation $j: k$ will be used to denote the sequence of time steps from time j to time k (inclusive).

Example: model of language

- Let random variable (state) be the variable Word, which can have these discrete values:
- Word $=\{$ From women's eyes this doctrine I derive: they sparkle still the right Promethean fire; they are the books, the arts, the academes, that show, contain and nourish all the world: else none at all in ought proves excellent. \}
- Sequence of n words is denoted by $w_{1} \ldots w_{n}$, and w_{t} denotes the word at position t of the sequence.
- What is the probability of this particular sequence of words?

$$
P\left(w_{1} \wedge \ldots \wedge w_{n}\right)=?
$$

Markov models

- Markov models are statistical models that describe the change of states, i.e. random variable X, in time using probability.
- In an ordinary Markov model, the state is directly visible to the observer, and therefore the state transition probabilities are the only parameters.
- In general, the current state may depend on all previous states, thus:

$$
\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1} \wedge \mathbf{X}_{t-2} \wedge \ldots \wedge \mathbf{X}_{0}\right)
$$

Markov process of the $1^{\text {st }}$ order

- The $1^{\text {st }}$-order Markov process: the current state depends only on the previous state, and not on any earlier states.
- The laws describing how the state evolves over time are contained entirely within the conditional distribution, called the transition model

$$
\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right) \Rightarrow \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)
$$

- The topology of the Bayesian network for state transitions:

Statistical model of language

- The expression for the probability of this sequence with the use of the product rule for n variables reads:
$P\left(w_{1} \wedge \ldots \wedge w_{n}\right)=\prod_{t=1}^{n} P\left(w_{t} \mid w_{1} \wedge \ldots \wedge w_{t-1}\right)=$
$=P\left(w_{n} \mid w_{1} \wedge \ldots \wedge w_{n-1}\right) \ldots P\left(w_{3} \mid w_{1} \wedge w_{2}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{1}\right)$
- Most of these terms are very difficult to estimate or compute. Thus we have to simplify.

Bigram model of language

- Bigram model is a Markov model of the $1^{\text {st }}$ order.

$$
\begin{aligned}
& \longrightarrow \mathbf{X}_{t-2} \rightarrow w_{t+1}^{n} P\left(w_{t} \mid w_{t-1}\right) \\
& P\left(w_{1} \wedge \ldots \wedge w_{n}\right) \approx \prod_{t=1}^{n} \mathbf{X}_{t+1} \\
& P\left(w_{1} \wedge \ldots \wedge w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{2}\right) \ldots P\left(w_{n} \mid w_{n-1}\right)
\end{aligned}
$$

- Calculation of transition probabilities: count the number of times each word pair occurs in a representative corpus, and use the counts to estimate the transitional conditional probabilities.
- if "they" appears 1000 times and is followed by "are" 30 times then the estimate of the probability of transition is $P\left(\right.$ are $_{t} \mid$ they $\left._{t-1}\right)=30 / 1000=0.003$.

Trigram and other models

- Trigram model corresponds to

$$
P\left(w_{1} \ldots w_{n}\right) \approx \prod_{t=1}^{n} P\left(w_{t} \mid w_{t-1} w_{t-2}\right)
$$

- For trigram and bigram models we must deal with zero counts. In these cases we use a small nonzero number or the process of smoothing gives a non-zero probability to such instances.
- Bi- and trigram models are sensitive only to a local context and local syntax, however they fail for long distance relationships.
- Grammar and syntax models exist that are better.

