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Probability

Probability summarizes our uncertainty about the world

— E.g., there is a probability of P = 0.6 that patient’s toothache is
caused by a cavity in the tooth.

— That is, we believe there is an 60% chance a patient with a
toothache has a cavity.

— The rest P = 0.4 (40%) summarizes all other causes.

Probability 0 < P< 1 corresponds to a degree of belief in the
truth of a given proposition:

— P =1 corresponds to a belief that a given sentence is true
— P =0 corresponds to a belief that a given sentence is false
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Random wvariable

* Random variable X: basic element of the probability theory.
Describes the property of the world such that it assumes concrete
values with some probability, i.e. the values of X are assigned with
some probability.

* According to the set of all possible values:
— Boolean random variables: have the values (true, false).
Example: Cavity
— Discrete random variables: exhaustive and countable domain of
mutually exclusive values. Example: Nucleotide = (4, C, T, G)
— Continuous random variables: values from the real numbers,

either the entire line or some subset. Example: Height = 164cm
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Evidence

Agent’s beliefs depend on its observations to this date.

These observations constitute the evidence, on which probability
assertions are made
— Example: Before drawing a card from a shuffled pack, the agent
assigns P = 1/52 to a drawn card to be the ace of spades. After
looking at the drawn card, the probability of the same proposition is
either = 0 or 1.

Before the evidence is obtained we talk about the prior or
unconditional probability; after the evidence is obtained we talk
about posterior or conditional probability.

Probabilities can change when more evidence is acquired.

Prior (unconditional) probability

* Before the evidence is obtained we talk about prior or unconditional
probability of a proposition @, written as P(a), that corresponds to
belief prior to arrival of any evidence.

— Elementary proposition is the assignment of value, e.g. Weather = sunny

» P(Weather) denotes the vector of probability values for each
individual state of the weather, the so-called prior probability
distribution

* E.g, for the random variable Weather = (sunny, rainy, cloudy, snow),
the prior probability distribution reads: P(Weather) = ( 0.72, 0.1,
0.08, 0.1) (probabilities are normalized, i.e. they sum to 1)

Posterior (conditional) probability

After the evidence is obtained we talk about posterior probability
— e.g., P(cavity | toothache) = 0.6, given that foothache is all I know

Notation: P(a | b), where a and b are (any) propositions, reads
as “the probability of a, given all we know is b”

If we know more, e.g., cavity is also given, then we (trivially) have
P(cavity | toothache A cavity) = 1. (Note: A is symbol for logical &)

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity | toothache A sunny) = P(cavity | toothache) = 0.6




Product rule

* Definition of posterior probability in terms of prior probabilities
P(anb)
P(b)

* The last equation can be rewritten as the so-called product rule

P(a nb) = P(a|b) P(b) = P(b|a) P(a)

P(alb) =

— Meaning for @ and b to be true, we need b to be true and we also need
a to be true given b Or we need @ to be true and we also need b to be
true given a

* Posterior probabilities are vehicles of probabilistic inference

Bayes’ rule

Main formula of probabilistic reasoning, derived from the
product rule.

Recall the definition of the product rule
P(anb)=P(a|b) P(b)
P(anb)=P(b|a) P(a)

Equating the two right-hand sides, and dividing by P(a) we get

the Bayes’ rule
P(a|b) P(b)

P(b|a)= )

Bayes’ rule: example

* What is the conditional (postetior) probability that a patient has
meningitis when his/her neck is sdff? P(m | s)=?

— The doctor knows that meningitis causes a stiff neck in 50% of cases, that is
P(s|m)=0.5

— The doctor knows the prior probability of meningitis P(m) = 1/50000

— The doctor knows the prior probability of stiff neck P(s) = 1/20

PlsIm)Pm) _ 4 6002

¢ Applying the Bayes’ rule: P(m |s) =
pplying v (m]s) P(s)

e That is, we expect 1 in 5000 patients with stiff neck to have
meningitis.

Bayes’ rule: cause and effect

Bayes’ rule for vatiables X and Y

P(Y|X)= 71)()(1)'(2 ;)(Y )

Can be rewritten as a rule for cause and effect

P(Effect | Cause) P(Cause)

P(Cause | Effect) = P(Effect)

Useful for assessing diagnostic probability from causal probability,
because it is easier to know the conditional probabilities of effect
given the cause.

Conditional independence
* In reality, a single cause can directly influences a number of

effects, all of which are conditionally independent given the
cause.

* Thus, the full joint distribution can be then written as

P(Cause A Effect, ... A Effect,) = a P(Cause) H P(Effect; | Cause)

Comr) <
K P
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Bayesian network: specification
A set of random variables makes up the nodes;
A set of directed links (arrows) connects pairs of nodes;
The meaning of an arrow: X/ has a direct influence upon X,

If there is an arrow from node (variable) X to node (variable) X,
the variable Xj is said to be a parent of X;

Each node X has a conditional probability distribution P(X; |
Parents(X;)) that quantifies the effect of the parents on the node.
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Conditional probability table (CPT)

* A node with no parents has only one row with prior
probabilities of each possible value of variable.

* Each row of probabilities must sum to 1, but we often omit the
column for negation because P(—X) = 1 — P(X)

* Distribution of probabilities associated with each node with
parents is called conditional probability table (CPT)

* Each row in CPT contains the conditional probability for &
conditioning case (which is a combination of values for the
parent nodes) and sums to 1.

Markov models

* Markov models are statistical models that describe the change of
states, i.c. random variable X| in time using probability.

 Inan ordinary Markov model, the state is directly visible to the
observer, and therefore the state transition probabilities are the only
parameters.

* In general, the current state may depend on all previous states, thus:

PCX, [ X)) =PX [ X AX ) AL AX)

Markov assumption

* Markov assumption: the current state depends only on a finite
history of previous states (Markov process, Markov chain).

* Markov process of the k" -order: Process, in which the current
state depends on k previous states, and not on any eatlier states,
thus:

PX, [Xo. ) = PX, XA X A AX )

— Notation j:k will be used to denote the sequence of time steps
from time j to time & (inclusive).

Markov process of the 1% order

* The 1%-order Markov process: the current state depends only on the
previous state, and not on any earlier states.

* The laws describing how the state evolves over time are contained
entirely within the conditional distribution, called the transition model

P(X, | X,., )= PX, X, )

¢ The topology of the Bayesian network for state transitions:

Example: model of language

* Let random variable (state) be the variable Word, which can have
these discrete values:

— Word = {From women's eyes this doctrine I derive: they
sparkle still the right Promethean fire; they ate the books, the
arts, the academes, that show, contain and nourish all the world:
else none at all in ought proves excellent. }

* Sequence of n words is denoted by w; ...w,, and w, denotes the word
at position ¢ of the sequence.

* What is the probability of this particular sequence of words?

Pw AoAw,) =7

Statistical model of language

* The expression for the probability of this sequence with
the use of the product rule for n variables reads:

Pw A.oAw,) = HP(W[ (W AAW, )=

t=1

=P(w, | W, Ao AW, ). P(Wy | Wy Awy)P(w, | W) P(w))

* Most of these terms are very difficult to estimate or
compute. Thus we have to simplify.




Bigram model of language

Bigram model is a Markov model of the 1 order.

P(w, Aonw,) zI_IP(W, [w.1)

=1

Pw, Ao Aw,) = P(W)P(w, | W) P(wy | wy)..P(w, |w,_,)

Calculation of transition probabilities: count the number of times
each word pair occurs in a representative corpus, and use the
counts to estimate the transitional conditional probabilities.
— if “they” appears 1000 times and is followed by “are” 30 times
then the estimate of the probability of transition is
P(are,| they, ;) =30/1000=0.003.

Trigram and other models

Trigram model corresponds to

P(wp..w,) = [ [ POw, [w_ w._,)

t=1

For trigram and bigram models we must deal with zero counts. In

these cases we use a small nonzero number or the process of
smoothing gives a non-zero probability to such instances.

Bi- and trigram models are sensitive only to a local context and
local syntax, however they fail for long distance relationships.

Grammar and syntax models exist that are better.
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