
1

COSC 348:
Computing for Bioinformatics

Lecture 9:
Hidden Markov models:

theory

Lubica Benuskova

http://www.cs.otago.ac.nz/cosc348/
2

Hidden Markov Model (HMM)

• In a Hidden Markov Model, the state is not directly visible. Each state
has a probability distribution over the possible output tokens (i.e.
observations associated with that state).

• Hence, the sequence of tokens/observations generated by an HMM
gives some information about the sequence of hidden states.

• E.g. speech – words are states and utterances are the observed tokens:

wordt

utterancetutterance1 utterancek

word1 wordk

3

States and observations

• Let Xt denotes the set of state variables at time step t, and Et
denotes the set of (observations) evidence variables at time
step t.
– The concrete output/evidence at time t is Et = et .
– The concrete state at time t is Xt = xt .

• Assumption: the same set of variables are state variables Xt
and evidence variables Et , respectively, at each step t.

• We will assume that the state sequence starts at t = 0.

• We will assume that the evidence sequence starts at t = 1.
3 4

• We assume each state depends only on a previous state (1st order
Markov process), hence the transition probability P(Xt | Xt-1) for ∀t.

• We assume the evidence variables at time t depend only on the
current state, hence the emission probability P(Et | Xt) for ∀t.

• Stationary process: causal laws that govern the process of change of
the world do not change over time.

Transmission & observation (emission) model

4

5

Low High

0.70.3

0.2 0.8

DryRain

0.6 0.6
0.4 0.4

Example of HMM for weather: Bayesian net

• We have one Boolean state variable that can have two values:
Atmospheric_Pressure = {Low, High}.

• We cannot observe it directly, but we can observe whether it’s raining
or not – so evidence is also a Boolean variable: Weather = {Rain, Dry}

6

Example of HMM for weather: probabilities

• Two hidden states : ‘Low’ and ‘High’ atmospheric pressure.
• Two observations : ‘Rain’ and ‘Dry’ (which is negation of Rain).

• Transition probabilities: P(‘Low’|‘Low’) = 0.3; P(‘High’|‘Low’) =
0.7; P(‘Low’|‘High’) = 0.2 and P(‘High’|‘High’) = 0.8

• Observation probabilities : P(‘Rain’|‘Low’) = 0.6 , P(‘Dry’|‘Low’) =
0.4 , P(‘Rain’|‘High’) = 0.4 , P(‘Dry’|‘High’) = 0.3 .

• In order to perform any kind of probabilistic inference, we need to
specify initial (i.e. prior) probabilities of states at time t = 0:
– E.g.: P(‘Low’) = 0.4 , P(‘High’) = 0.6.

7

Example: a 2-state HMM for DNA

• Top: HMM architecture and parameters. (Note: States are abstract!)
– green: state transition probabilities, red: emission probabilities.

• Bottom: sequence generation. Sequence score = Π P(lettert | statet)

Beginning End

0.1

Score =
product of
concrete
emission
probabilities

8

C-style pseudocode for generating output tokens

// Generate a random number between 0 and 1 according to
uniform distribution
double unifRand() {

return rand() / double(RAND_MAX);
}
int main(){

seed();
while (state[t] = W){

rnd = unifRand();
if (0.0 < rnd <= 0.35) letter[t] = A;
if (0.35 < rnd <= 0.5) letter[t] = C;
if (0.5 < rnd <= 0.65) letter[t] = G;
if (0.65 < rnd <= 1.0) letter[t] = T;

}
return(0);
}

9

C-style pseudocode for generating state transitions

// Generate random number (0, 1] according to uniform distrib
double unifRand() {

return rand() / double(RAND_MAX);
}
int main(){

seed();
state[0] = B;
rnd = unifRand();
if (0.0 < rnd <= 0.5) state[1] = W;

else state[1] = S;
until (state[t] = E){

rnd = unifRand();
if (0.0 < rnd <= 0.8) state[t+1] = state[t];
if (0.8 < rnd <= 0.9) state[t+1] = the other state;
if (0.9 < rnd <= 1.0) state[t+1] = E;
t = t + 1;

}
return(0);
} 10

Pseudocode for generating state transitions & observations
double unifRand() {

return rand() / double(RAND_MAX);
}
int main(){

seed(); // new random seed
state[0] = B;
rnd = unifRand();
if (0.0 < rnd <= 0.5) state[1] = W;

else state[1] = S;
until (state[t] = E){

rnd = unifRand();
… // transition to a new state
if(state[t] = W){

rnd = unifRand(); … // new output token
}

if(state[t] = S){
rnd = unifRand(); … // new output token
}

t = t + 1;
}

return(0);
}

11

General architecture of HMM for biosequences

• S is the start state, E is the end state, di denotes deletion at position i, mi
denotes match sequence letter at position i; ii denotes insertion of a letter
at i. Each transition (arrow) is accompanied with a probability.

11

S E

d2

m2

i2

d1

m1

i1 i3 i4

m3

d3

12

Example of trained HMM for DNA (lab 5)

• Left: state transition model; Right: emission model for M and I states.

• We have 4 insertion states, 3 match states and 3 deletion states (# of D
and I states depends on # of M states).

12

A C G T

M1 0.10 0.80 0.04 0.06

M2 0.40 0.55 0.04 0.01

M3 0.73 0.18 0.02 0.07

I1 0.15 0.29 0.33 0.23

I2 0.44 0.51 0.02 0.03

I3 0.70 0.08 0.19 0.03

I4 0.01 0.01 0.08 0.90

