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Hidden Markov Model (HMM)

• In a Hidden Markov Model, the state is not directly visible. Each state 
has a probability distribution over the possible output tokens (i.e. 
observations associated with that state). 

• Hence, the sequence of tokens/observations generated by an HMM 
gives some information about the sequence of hidden states. 

• E.g. speech – words are states and utterances are the observed tokens: 

wordt

utterancetutterance1 utterancek

word1 wordk
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States and observations

• Let Xt denotes the set of state variables at time step t, and Et  
denotes the set of (observations) evidence variables at time 
step t. 
– The concrete output/evidence at time t is Et  = et .
– The concrete state at time t is Xt  = xt .

• Assumption: the same set of variables are state variables Xt
and evidence variables Et , respectively, at each step t. 

• We will assume that the state sequence starts at t = 0.

• We will assume that the evidence sequence starts at t = 1.
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• We assume each state depends only on a previous state (1st order 
Markov process), hence the transition probability P(Xt | Xt-1) for ∀t. 

• We assume the evidence variables at time t depend only on the 
current state, hence the emission probability P(Et | Xt ) for ∀t. 

• Stationary process: causal laws that govern the process of change of 
the world do not change over time.

Transmission & observation (emission) model
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Example of HMM for weather: Bayesian net

• We have one Boolean state variable that can have two values: 
Atmospheric_Pressure = {Low, High}.

• We cannot observe it directly, but we can observe whether it’s raining 
or not – so evidence is also a Boolean variable: Weather = {Rain, Dry}
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Example of HMM for weather: probabilities

• Two hidden states : ‘Low’ and ‘High’ atmospheric pressure. 
• Two observations : ‘Rain’ and ‘Dry’ (which is negation of Rain).

• Transition probabilities: P(‘Low’|‘Low’) = 0.3; P(‘High’|‘Low’) = 
0.7;  P(‘Low’|‘High’) = 0.2 and P(‘High’|‘High’) = 0.8

• Observation probabilities : P(‘Rain’|‘Low’) = 0.6 , P(‘Dry’|‘Low’) = 
0.4 , P(‘Rain’|‘High’) = 0.4 , P(‘Dry’|‘High’) = 0.3 .

• In order to perform any kind of probabilistic inference, we need to 
specify initial (i.e. prior) probabilities of states at time t = 0: 
– E.g.: P(‘Low’) = 0.4 , P(‘High’) = 0.6.
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Example: a 2-state HMM for DNA

• Top: HMM architecture and parameters. (Note: States are abstract! )
– green: state transition probabilities, red: emission probabilities.

• Bottom: sequence generation. Sequence score = Π P( lettert | statet)

Beginning End
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Score = 
product of   
concrete 
emission 
probabilities
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C-style pseudocode for generating output tokens

// Generate a random number between 0 and 1 according to 
uniform distribution
double unifRand() {    

return rand() / double(RAND_MAX);
}
int main(){    

seed();    
while (state[t] = W){        

rnd = unifRand();        
if (0.0 < rnd <= 0.35) letter[t] = A;            
if (0.35 < rnd <= 0.5) letter[t] = C;
if (0.5 < rnd <= 0.65) letter[t] = G;            
if (0.65 < rnd <= 1.0) letter[t] = T;

}    
return(0);
}
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C-style pseudocode for generating state transitions

// Generate random number (0, 1] according to uniform distrib
double unifRand() {    

return rand() / double(RAND_MAX);
}
int main(){    

seed();
state[0] = B;    
rnd = unifRand(); 
if (0.0 < rnd <= 0.5) state[1] = W;

else state[1] = S; 
until (state[t] = E){        

rnd = unifRand();       
if (0.0 < rnd <= 0.8) state[t+1] = state[t];
if (0.8 < rnd <= 0.9) state[t+1] = the other state; 
if (0.9 < rnd <= 1.0) state[t+1] = E;
t = t + 1;          

}    
return(0);
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Pseudocode for generating state transitions & observations
double unifRand() {    

return rand() / double(RAND_MAX);
}
int main(){    

seed();  // new random seed
state[0] = B;    
rnd = unifRand(); 
if (0.0 < rnd <= 0.5) state[1] = W;

else state[1] = S; 
until (state[t] = E){        

rnd = unifRand();       
…  // transition to a new state
if(state[t] = W){

rnd = unifRand(); … // new output token
}       

if(state[t] = S){
rnd = unifRand(); … // new output token
}

t = t + 1; 
}    

return(0);
}
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General architecture of HMM for biosequences

• S is the start state, E is the end state, di denotes deletion at position i, mi
denotes match sequence letter at position i; ii denotes insertion of a letter 
at i.  Each transition (arrow) is accompanied with a probability.
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Example of  trained HMM for DNA (lab 5)

• Left: state transition model; Right: emission model for M and I states.

• We have 4 insertion states, 3 match states and 3 deletion states (# of D 
and I states depends on # of M states).
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A C G T

M1 0.10 0.80 0.04 0.06

M2 0.40 0.55 0.04 0.01

M3 0.73 0.18 0.02 0.07

I1 0.15 0.29 0.33 0.23

I2 0.44 0.51 0.02 0.03

I3 0.70 0.08 0.19 0.03

I4 0.01 0.01 0.08 0.90


