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Example: 3-state HMM of DNA

• A 3-state HMM, with observation 
probabilities associated with each 
state and state transition 
probabilities.

• We can use the HMM to generate 
and score a new sequence X

• But how do we know number of 
states and all the probabilities?

• Training of HMM: if we are given 
n aligned sequences we can infer 
the underlying HMM from them.
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Inference/training of HMM based on alignment

1) A C A A T G
2) T C A A T C
3) A C A A G C
4) A G A A T C
5) A C C A T C

Observation probability of  each letter 
at a given position is derived from the 
frequency. If  these frequencies are the 
same at several positions, then we can 
collapse two or more states into one.

Transition probability: 
in our simple case    
P(Xt | Xt-1) = 1.0

First we perform global 
alignment of n sequences, 
we assume there are as 
many states as letters
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Inference/training of HMM based on alignment

1) A C A - - - A T G
2) T C A A C T A T C
3) A C A C - - A G C
4) A G A - - - A T C
5) A C C G - - A T C
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.2Observation 
probability of  
letters at a given 
position derived 
from the frequency

Transition probability: 
how many times the 
sequence would continue 
with a letter if  we did not 
have a deletion (gap)

First we perform global 
alignment of n sequences, 
we assume there are as many 
states as letters + the state 
that represents gaps
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Inference/training of  HMM for biosequences
• We choose & align particular set of n related training sequences. 

• Initial number of M states equals number of times there is a letter (any 
letter) at a given position in all aligned sequences. 
– We fill in the I and D states according to initial number of M states.

• Then we estimate the symbol emission probabilities in each M & I state 
from a set of training sequences by observing the number of times each 
emission occurs in the training set and dividing by the n.
– If emission probabilities for 2 or more states are the same, then we merge them 

into one hidden state. We re-calculate the number of I and D states accordingly.

• Then we estimate all state-to-state transition probabilities from a set of 
training sequences by observing the number of times each transition 
occurs in the training set and dividing by the n.
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Example of  trained HMM for DNA

• Left: state transition model; Right: emission model for M and I states.

• We have 4 insertion states, 3 match states and 3 deletion states (# of D 
and I states depends on # of M states).
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A C G T

M1 0.10 0.80 0.04 0.06

M2 0.40 0.55 0.04 0.01

M3 0.73 0.18 0.02 0.07

I1 0.15 0.29 0.33 0.23

I2 0.44 0.51 0.02 0.03

I3 0.70 0.08 0.19 0.03

I4 0.01 0.01 0.08 0.90
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Applications of HMM in bioinformatics

• Once a HMM has been successfully derived from a family of 
sequences, it can be used for a number of tasks, including
– Multiple alignments
– Database mining and classification of sequences
– Structural analysis and pattern discovery

• All these tasks are based on computation of any given sequence,
– of its probability (i.e. score) according to derived HMM, 
– Computation/inference of the most likely path of states and 
– on the analysis of the HMM structure itself.
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Analysis of HMM
• The desired or ideal HMM is a minimal model against which all the 

sequences in the training set will have the highest scores compared to if 
they were generated by any other HMMs. 
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Score = 
product of   
concrete 
emission 
probabilities

0.1
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Inference of the most likely state path

• Most likely state sequence: given all evidence to date, we want to 
find the sequence of states that is most likely to have generated all the 
evidence up to date, i.e. argmax 1: t P(x 1: t | e1: t).

– In the weather example, if it rained on each of the first three days 
and it does not rain on the fourth day, then the most likely 
explanation is that the atmospheric pressure was low on the first 
three days and was high on the fourth.

– Algorithms for this task are useful in many applications, including 
speech recognition, i.e. to find the most likely sequence of words, 
given utterance, or the reconstruction of state sequences in 
bioinformatics, that is to infer the most likely sequence of 
abstract states from a concrete sequence of letters.
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• Let us denote bym1:t the probability of the best sequence 
reaching each state at time t  given particular evidence e1: t

• Then the recursive relationship between most likely paths to 
each state xt+1 and most likely paths to each state xt, reads

• This is the Viterbi formula for the most likely sequence of states.

Viterbi formula for the most likely path
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• General formula:

• Substitution t+1 = 1 and t =0 (we must know the prior P(X0) ):

• Substitution t+1 = 2 and t = 1:

• Etc. We record the sequence of states which maximizes m1:t .

Calculation for t =1 and t = 2
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Multiple sequence alignments (MSA)

• Computing Viterbi path of most probable states is also called 
“aligning sequence to its (hidden Markov) model”.

• MSA can be derived, in an efficient way, by aligning the Viterbi 
paths to each other.
– We do not align actual sequences, but the sequences of states 

instead. 
– First we infer these state sequences and then we align them.
– This is based on an assumption that letters at a given position 

may not be the same, but the state sequence may be the same.

• So first, HMM is derived from a family of sequences aligned by a 
different method and then it is used to re-align them or to align a 
new query sequence to a database.
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Database mining

• Given a trained HMM, the likelihood of any given sequence as well 
as likelihood associated with the Viterbi path can be calculated. 

• That is, not only for the family of sequences, the HMM was derived 
from and for, but for any sequence.

• These probability scores can be used in discrimination tests in 
database searches to separate sequences associated with the training 
family from those that are from different families.
– This is applicable to both the whole sequences and to their 

fragments (e.g. genes, promoter regions, motifs, etc.)
– Similar idea like hash functions but more sophisticated.
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Classification of sequences

• HMMs can also be used in classification, for instance across protein 
families or subfamilies of a single protein family.
– Based on a principle that these similar sequences have a similar 

likelihood and/or similar Viterbi path.

• This can be done by training HMM  for each class (if class-specific 
training sets are available).

• A global protein classification system with roughly one HMM per 
superfamily is under way.
– There are hundreds of thousands of proteins but it is estimated 

there might be only 1000 or so superfamilies.
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Pattern discovery: information

• Patterns can be discovered by examining the structure of trained HMM.

• Shannon’s information (in bits) is a measure of the information content 
associated with the outcome of a random variable X, which assumes one 
of N values xi:

• If the possible values xi of variable X have probabilities P(xi) then 
entropy of the whole sequence is:

• Similar sequences will have similar entropies.
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• Let the two sequences produce these entropy profiles of the emission 
probability distributions associated with the M states of underlying 
HMM.
– If we know regions with low entropy are associated with some property, we can 

predict the second sequence has at least one possibly two such regions.

Entropy profile of the emission probability
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Pattern discovery and analysis of structure

• High emission and transition probabilities are associated with 
conserved regions and consensus patterns that may have structural 
or functional significance.

• One convenient way of detecting such patterns is to plot entropy of 
the emission distributions along the backbone of the model. 

• Various patterns in entropy are then associated with corresponding 
features (structure, function) and we can build a corresponding 
library of these associations. 

• There are number of tools now available that use HMM for gene 
finding, protein classification and even the structure/function 
prediction.
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