
An introduction to Hidden Markov Models

Richard A. O’Keefe

2004–2009

1 A simplistic introduction to probability

A probability is a real number between 0 and 1 inclusive which says how likely
we think it is that something will happen.

Suppose there are N things that can happen, and we are interested in how
likely one of them is. Let’s say that the N possible events are represented by
the values of a variable x, and the event we are interested in is represented by
the outcome x = 42. Then Pr(x = 42) is the probability in question.

But how do we know what number to use? One rule which is sometimes
used is “if there are N possible outcomes and you can’t think of any reason why
one should be any more or less likely than another, take the probability of each
to be 1/N .” This is called the rule of indifference. It’s a convenient rule, but
we have no right to expect it to give the right answer.

There has been a lot of philosophical debate over the centuries about what
probabilities mean. Some people think that they are or should mean people’s
strength of belief. The simplest interpretation, and the one I was taught, is the
frequency interpretation. Consider a sequence of observations of x, x1, x2, ....xM .
Then (

∑M
i=1(xi = 1))/M , the number of cases where the event of interest did

happen divided by the total number of cases where it might have happened, is
the observed probability that x = 1. We can define the probability to be the
limit as M →∞.

The observed probability is a good estimate of the limit probability, but it
is only an estimate. As Dilbert once observed, shift happens.

The observed proportion is exactly what we want for Hidden Markov Models.
Probabilities satisfy some useful laws.

Range All probabilities are between 0 and 1 inclusive. That is, for any event
e, Pr(e) ∈ [0, 1]

Certainty All logical truths have probability 1. If event e must happen,
Pr(e) = 1. Conversely, all logical falsehoods have probability 0. If event e
cannot happen (perhaps because we don’t allow it to), Pr(e) = 0.

Finite Additivity If events e and f are mutually exclusive (that is, they can-
not both happen together, but neither need occur) then
Pr(e ∨ f) = Pr(e) + Pr(f).

1



For example, if in a certain die the face numbered 1 turns up 1
7 of the time

and the face numbered 6 turns up 2
7 of the time, then (face 1 or face 2)

turns up 3
7 of the time.

Complement An event e cannot both happen (e) and not happen (¬e). An
event either happens or it doesn’t (e∨¬e is certain). So Pr(e)+Pr(¬e) = 1
or Pr(¬e) = 1− Pr(e).

For example, the probability that neither face 1 nor face 2 turns up is
1− 3

7 = 4
7 for our imaginary die.

Disjunction Let e and f be any two events. If e occurs, then e∧ f might have
occurred; if f occurs, then e ∧ f might have occurred. So just adding up
Pr(e) + Pr(f) is too big, it counts e ∧ f twice. So Pr(e ∨ f) = Pr(e) +
Pr(f) − Pr(e ∧ f). For more events, see The Principle of Inclusion and
Exclusion in any book on combinatorics.

For example, consider a fair die. The probability of an even number is 1
2 .

The probability of a number greater than 3 is 1
2 . But the probability of

(an even number or a number greater than 3) is not 1
2 + 1

2 = 1, because
the numbers which are even and greater than 3 (4,6) have been counted
twice. The right answer is 1

2 + 1
2 −

1
3 = 2

3 .

Implication If x happens whenever y happens, then Pr(x) ≥ Pr(y). Greater
than or equal because there might be other ways for x to happen that do
not involve y. For example, the probability that I will get wet is greater
than the probability that it rains and I go out without an umbrella because
I might have a shower.

Conjunction If e and f both occur, then e occurs. By the implication rule,
Pr(e) ≥ Pr(e ∧ f). To put it another way, Pr(e ∧ f) ≤ min(Pr(e),Pr(f)).

Independence If e1 and f are independent events then Pr(e∧f) = Pr(e)Pr(f).
Unfortunately, this is the definition of independence. But a common-sense
“e does not causally affect the outcome of f , f does not causally affect
the outcome of e, they have no common cause which affects them both in
a related way” will get you a long way.

Given If we learn something, call it E, we move from a world in which we
don’t know whether E happened or not to one where we know that it did.
We can expect this to alter probabilities. The chance that someone has
Parkinson’s disease is fairly low; the chance that someone who has a resting
tremor has Parkinson’s disease is rather higher. The probability that H
happens given that we know that E has happened is written Pr(H|E).

Pr(H|E) = Pr(H ∧ E)/Pr(E).

Convex combination The convex combination of a set of probability distri-
butions is itself a probability distribution. That is, suppose p1, . . . , pk :
S → [0, 1] are probability distributions over some space S and w1, . . . , wk ∈

2



[0, 1] are real numbers such that w1+ . . .+wk = 1. Then w1p1+ . . .+wkpk

is a probability distribution over S. We can see this intuitively: the sum
is the distribution you get when first you make a random choice i from
{1, . . . , k} according to the probability distribution w and then make a
random choice from S according to the probability distribution pi.

That’s all the probability you need to grasp what’s going on in Hidden
Markov Models. If you want to explore basic probability on the Web, try
http://www.probabilitytheory.info/. For applications in computing, Con-
crete Mathematics by Graham, Knuth, and Patashnik is a really lovely book.

1.1 Likelihood

That’s all the probability you need, but not quite all the statistics. There is a
concept that is bewilderingly similar to probability, but importantly different.
It’s called likelihood.

Suppose we have one probabilistic model M and several outcomes E1, E2,
. . . , En. We can ask “what is the probability of Ei under M”, and the number
we get tells us how often we should expect to see Ei happen if the experiment
were repeated many time, or how strongly we should expect Ei to happen if
it were just done once. In either case, we are concerned with predicting future
events.

Suppose we have many models M1, M2, . . . , Mk and one outcome P which
has already happened. We can ask “what was the probability of E under Mj”.
These numbers are not the probability that E will happen. We already know
it happened. Instead of telling us about the event, these numbers, called like-
lihoods, tell us about the models. We usually pick the model that would have
made the likelihood biggest. This is called Maximal Likelihood estimation.
With likelihoods, we are concerned with explaining past events.

2 Matching

Suppose we have a collection of sequences which we have aligned, and want
to find other (sub-)sequences that look like them. How can we summarise our
sequences?

• Raw data. We could simply keep the raw data and match a (sub-)sequence
against them. We could look for exact matches. There are plenty of
algorithms for searching for “any of a set of strings”. A simple one is to
build a TRIE holding all the strings and then walk along the new sequence
matching each prefix against the trie. This would cost O(mn) where m
is the longest sequence in our initial collection and n is the length of the
new sequence.

We could try alignment against each sequence.

3



• Consensus sequences. To get a consensus sequence from an alignment, pick
the commonest entry in each column. If there is a tie, choose arbitrarily
from the commonest entries, or use a wild card. For example,

P H Y L O G R A M S
P O L Y H E D R O N
Q U O T A T I O N S
P U G N A C I O U S
P U ? ? A ? I O ? S

Consensus sequences can be matched fairly quickly. However, they over-
generalise because they don’t recognise any dependence between positions
and they under-generalise because they don’t mention entries that do oc-
cur but are less frequent. To limit under-generalisation we have to use
approximate matching.

• Sequence logos. A sequence logo is a graphical presentation of the proba-
bility of each entry at each position. For matching purposes, we can think
of these things as independent probabilities, so

match logo seq = loop logo seq 1.0
where loop [] [] p = p

loop (prob:logo) (x:seq) p = loop logo seq (p*prob x)

Sequence logos don’t under-generalise as much as consensus sequences.
They still over-generalise by considering the choice of amino acid or nu-
cleotide at one position to be independent of the choice at every other
position.

• Regular expressions. Regular expressions are a very practical pattern-
matching facility. They are nice to work with because they form a well
behaved algebra, you can even solve a system of equations where the left
hand sides are variables and the right hand sides are regular expressions.

One of the nice things about regular expressions is that their power is
great enough to be useful while at the same time being small enough that
they can be implemented efficiently.

It is particularly useful that they can handle gaps.

I’ll use a subset of UNIX syntax for regular expressions. The full definition
(or rather definitions, there are several variants) can be found in

– “man 7 regex” on Linux,

– “man 7 re_format” on MacOS X, or

– “man -s 5 regex” on Solaris.

PERL extends regular expression syntax further, so far that the pleasant
speed properties of regular expressions are completely lost. We are only
concerned with the basics here.

4



– The empty expression is a regular expression, which always matches
an empty sequence.

– If e is a regular expression, (e) is a regular expression that means the
same thing. Parentheses can be used to resolve operator precedence.

– If c is a character, other than a special character, then c is a regular
expression that matches c.

– If c is a special character, then \c is a regular expression that matches
c.

– If c1 . . . cn are characters, then [c1 . . . cn] is a regular expression that
matches any one of those characters.

– . (dot) is a special character that matches any character.

– If c1 . . . cn are characters, then [^c1 . . . cn] is a regular expression that
matches any character other than those.

– If e1, e2, . . . , en are regular expressions, then e1|e2| . . . |en is a regular
expression that matches whatever e1 matches or whatever e2 matches
or . . . whatever en matches.

– If e1, e2, . . . , en are regular expressions, then e1e2 . . . en with no
visible operator between the e’s is a regular expression matching any
match of e1 followed by any match of e2 followed by . . . any match of
en.

– If e is a regular expression, e∗ is a regular expression matching 0 or
more adjacent matches of e.

– If e is a regular expression, e+ is a regular expression matching 1 or
more adjacent matches of e.

– If e is a regular expression, e? means (e|) (match e or match the
empty sequence), 0 or 1 matches of e.

Going back to the consensus sequence example,

(PHYLOGRAMS|POLYHEDRON|QUOTATIONS|PUGNACIOUS)

is a regular expression, and so is

PU..A.IO.S

and so is

[PQ][HOU][YLOG][OHA][GETC][RDI][ARO][MONU][SN]

So a regular expression can do what the raw data can, and what a con-
sensus sequence can, and can get close to what a sequence logo can (but
not exactly). It can do more. It can do

5



(PHYLO|POLY)(GRAMS|HEDRON)|(QUOTATION|PUGNACIOU)S

thus capturing some medium-distance dependencies between letters.

We can convert a regular expression withm symbols into a non-deterministic
finite state automaton with at most 6m states. By keeping a set of possi-
ble current states as a bit string, we can match a non-deterministic FSA
against a string of n characters in O(mn) time, which is pretty much like
näıve string matching.

We can convert a non-deterministic FSA with m states into a determin-
istic FSA, which in the worst case might contain O(2m) states. So this
preprocessing step could be exponential in the size of the pattern. But
once that is done, a sequence of length n can be matched against a de-
terministic FSA in time O(n). The worst case preprocessing time is bad,
but people routinely use regular expressions without worrying about it.

• Hidden Markov Models. Regular expressions can handle more structure
than the others, but they aren’t “fuzzy”; they don’t give us probabilities.

Basically, Hidden Markov Models are finite state automata with transi-
tion probabilities and emission probabilities. They are about the simplest
generalisation of regular expressions that give us probabilities, and about
the most complex ones that we can afford to use.

3 Three steps to Hidden Markov Models

The climax of this section is a formal definition of the structure of Hidden
Markov Models. Before I get there, I want to present Finite State Automata
and Markov Chains in a similar style, so that you can more easily see what the
similarities and differences are.

3.1 Finite State Automata

A Deterministic Finite State Automaton is a quintuple (S, V, s0, f, T ) where

• S = {s1, . . . , sN} is the set of states. We may as well take the states to
be the integers 1–N , and this is done below.

The only thing a finite state automaton can remember is what state it is
in now. It keeps no history.

• V = {v1, . . . , vM} is the vocabulary, the set of symbols that may be
recognised. We may as well take the symbols to be the integers 1–M and
this is done below.

• s0 ∈ S is the initial state.

• f ⊆ S is the set of final states.

6



• T : S × V → S is the transition function. At each step, if the current
state is q and the next symbol is x the new state will be T (q, x). if we
represent states and symbols by integers, the transition function can be
represented by a transition matrix T = (tij)i∈S,j∈V .

It is fairly easy to take a regular expression and generate a non-deterministic
finite state automaton from it. There are known algorithms for turning non-
deterministic FSAs into deterministic ones and minimising them. Books on
“automata and language theory” and books about compiler construction usually
describe these algorithms. There are programs to do this for several languages:

lex the traditional lexical analyser generator for UNIX. Emits tables and code
in C. Originally supported Ratfor as well. Proprietary.

flex a free fast extension of lex. Supports C and C++.

jflex a rewrite of flex in Java for Java. Free.

aflex a rewrite of flex in Ada for Ada. Free.

ml-lex a lex look-alike for the Standard ML language. Free.

alex a lex look-alike for Haskell 98. Free.

leex a lex look-alike for Erlang. Free.

Note that regular expression libraries often compile to fairly straightforward
backtracking code, because while compiling regular expressions to deterministic
FSAs is well understood and produces very fast matches, the compilation process
itself is slow. Libraries trade faster compilation for possibly slower execution.

The basic execution method for a regular expression matcher goes like this:

s := s0;
do {

x := next symbol();
s := T [s, x];

} while (x 6∈ f);

3.2 Markov Chains

Markov chains are the simplest probabilistic device for generating sequences. A
Markov chain is a triple (S, π,A) where

• S = {s1, . . . , sN} is the set of states. N is the number of states. We may
as well take the states to be the integers 1–N and this is done below.

The only thing a Markov chain can remember is what state it is in now.
It keeps no history.

The states of a Markov chain can be observed directly; the sequence of
states is the output.

7



• π : S → [0, 1] = {π1, . . . , πN} is the initial probability distribution on
the states. It gives the probability of starting in each state. We expect
that

∑
s∈S π(s) =

∑N
i=1 πi = 1. You should think of π as a column vector.

• A = (aij)i∈S,j∈S is the transition probability matrix. If the “machine”
is in state j, it may be in state i on the next clock tick with probability
aij . We expect that aij ∈ [0, 1] for each i and j, and that

∑
i∈S aij = 1

for each j.

Running a Markov chain goes like this:

s := select a state from distribution π;
for (;;) {

output s;
s := select a state from distribution A[−, s];

}

We can determine the probability distribution after each step inductively:

π(0) = π

π(n+1) = A.π(n) = An.π

For example, let us consider a Markov chain with two states s1=Fine,

s2=Rainy. We’ll start with the rule of indifference: π =
(

1/2
1/2

)
. Our tran-

sition matrix will respect the rule of thumb that tomorrow will probably have

similar weather to today: A =
(

4/5 2/5
1/5 3/5

)
. For example, this says that if

today is rainy, the probability that tomorrow will be fine is 2/5.
Day Pr(fine) Pr(rain)

0 0.5 0.5
1 0.6 0.4
2 0.64 0.36
3 0.656 0.344
4 0.6624 0.3376
...

...
...

∞ 2/3 1/3
Note that these are predictions. When it comes to day 3, we might know

that it is raining. It wouldn’t just be silly to say “the probability of rain is
0.344” if we know it is raining, it would be incoherent. We would restart our

predictions with π′ =
(

0
1

)
.

“Travesty” is a method for generating scrambled text. It’s an application of
Markov chains. Here’s an example:

f% travc 3 160 <hamlet.txt
o her of say cons let almy rapitate. exeunterdo
shout of one fit, fromine in thirtuest? would i

8



have tal from him fear is make as delay nay,
thoughtly so will c

How does this work? A kth-order travesty generator keeps a “left context”
of k symbols. Here k = 3, one context is “fro”. At each step, we find all the
places in the text that have the same left context, pick one of them at random,
emit the character we find there, and shift the context one place to the left. For
example, the text contains “(fro)m”, so we emit “m” and shift the context to
“rom”. The text contains “p(rom)ise”, so we emit “i” and shift the context to
“omi”. The text contains “n(omi)nation”, so we emit “n” and shift the context
to “min”. The text contains “(min)e”, so we emit “e” and shift the context to
“ine”. And so we end up with “fromine”.

How is this a Markov chain? The states are (k + 1)-tuples of characters,
only those substrings that actually occur in our training text. By looking at the
output we can see what each state was. There is a transition from state s to
state t if and only if the last k symbols of s are the same as the first k symbols
of t, and the probability is proportional to the number of times t occurs in the
training text.

A Travesty generator can never generate any (local) combination it has not
seen; it cannot generalise. There are no percent signs in hamlet.txt, for ex-
ample, so travc will never generate one. There are no occurrences of the word
“computer” in hamlet.txt, so travw will never generate it.

3.3 Hidden Markov Models

A Hidden Markov Model H is a quintuple (S, V, π,A,B) where

• S = {s1, . . . , sN} is the set of states. N is the number of states. We may
as well take the states to be the integers 1–N and this is done below.

Note that the (S, π,A) components form a Markov chain; since a Markov
chain keeps no history, neither does a Hidden Markov Model, so the only
thing a Hidden Markov Model can remember is what state it is in now.

The states of a Hidden Markov Model are hidden; we never observe them
directly.

• V = {v1, . . . , vM} is the vocabulary, the set of symbols that may be
emitted. We may as well take the symbols to be the integers 1–M and
this is done below.

• π : S → [0, 1] = {π1, . . . , πN} is the initial probability distribution on
the states. It gives the probability of starting in each state. We expect
that

∑
s∈S π(s) =

∑N
i=1 πi = 1. You should think of π as a column vector.

• A = (aij)i∈S,j∈S is the transition probability matrix. If the “machine”
is in state j, it may be in state i on the next clock tick with probability
aij . We expect that aij ∈ [0, 1] for each i and j, and that

∑
i∈S aij = 1

for each j.

9



• B = (bij)i∈V,j∈S is the emission probability matrix. if the “machine”
is in state j, it may emit symbol i on with probability bij .

You should think of emitting a symbol and starting to jump to a new state
as happening at the same time.

Time is discrete and starts with 1.
If we just had (S, π,A) we would have a structure called a Markov chain.

The probability that a Markov chain is in state i at time t is (At.π)i. (Raise the
transition matrix to the power t, multiply it on the right by the column vector
π, take the i component of the result.)

We can simulate the behaviour of a Hidden Markov model thus:

t := 1
i := a random element of S according to π
for (;;) {

j := i
i := a random element of S according to A[, j]
emit a random element of V according to b[, j]
t := t + 1

}
The (S, π,A) parts of a Hidden Markov Model make a Markov chain, so we

can predict state and symbol probability distributions after n steps:

π(n) = An.π

ψ(n) = B.An.π

But remember the states of the underlying Markov chain are hidden; all we can
observe is the symbols that are emitted.

Hidden Markov Models are widely used in computational linguistics for part-
of-speech tagging. If you read the sentence “Thursday Next works for Jurisfic-
tion and saw her first grammasite in Great Expectations”, unless you are a Jasper
Fforde fan you won’t have seen “Jurisfiction” or “grammasite” before, but from
what you know about English you can figure out that “Jurisfiction” is either the
name of a person or the name of an organisation. In either case “Jurisfiction” is
a Proper Noun. You can also work out that “grammasite” is a Common Noun.
A part of speech tagger can figure this out too, which is essential if we are to
deal with real text, which practically always (Heaps’ law) contains unfamiliar
words.

When we apply HMMs to biological sequences, we are in effect treating
biological sequences as being like language. Oddly enough, this seems to make
sense. Several people have pointed out that biological sequences have language-
like statistics.

4 The three problems

There are three problems we want to solve for Hidden Markov Models. Hidden
Markov Models are of practical interest mainly because all these problems can

10



be solved in practical time for long sequences.

4.1 Problem 1 — Classifying

Given a Hidden Markov Model H, what is the probability Pr(〈X1X2 . . . XT 〉|H)
of observing some sequence of symbols?

If we can solve that problem, then if we have several models H1, . . . , HK , we
can find the probability for each, and classify the observed sequence as having
most likely been generated by the one with the highest probability. That is, we
can use the Maximal Likelihood idea. In symbols,

class(−→X ) = arg max
k

Pr(−→X |Hk)

4.2 Problem 2 — Decoding

Given a Hidden Markov ModelH, what is the best sequence of states ŝ(1) . . . ŝ(T )
that would explain the observed sequence of symbols 〈X1X2 . . . XT 〉?

If the states correspond to things like “is in an active site”, “is in a trans-
membrane domain”, “is in an alpha helix”, “is in a sheet”, then this might let us
“parse” a protein and discover something about its structure. In fact “Profile
Hidden Markov Models” are a special case of HMMs and this is one of their
uses.

4.3 Problem 3 — Training

How do we learn the parameters of an HMM from observations?

5 Problem 1 — Classifying

Key idea: to process a sequence, consider a forward or backward loop that
processes it one element at a time.

Here we break the sequence X(1 . . . T ) into two parts, a “past” sequence
X(1 . . . t) and a “future” sequence X(t+1 . . . T ). In the Hidden Markov Model,
each symbol emission and each state transition depend only on the current state;
there is no memory of what happened before, no lingering effects of the past.
This means that we can work on each half separately.

The motive for splitting the sequence into two parts is a hope that we might
be able to use induction on t. This turns out to work. The inductive calculation
where t advances from 1 towards T is called the forward calculation, while the
calculation where t is decremented down from T towards 1 is called the backward
calculation.

5.1 The Forward Calculation

Key idea: sometimes a straightforward proof by induction doesn’t work out,
and proving a stronger claim turns out to be easier, because you have more to

11



work with at each step. In the same way, when designing a loop, introducing
some more variables and establishing a stronger result may be easier. All is well
provided we can recover the answer to our original question from an answer to
the stronger one. Here it turns out to be useful to ask about the state as well
as the sequence.

Define s(t) to be the state the HMM is in at time t.
Define α(t, i) to be the probability of (observing the prefix X(1 . . . t) and

being in state i at time t), given our current Hidden Markov Model H. In
symbols,

α(t, i) = Pr(X(t . . . 1) ∧ s(t) = i|H)

How can we determine values for α?

5.1.1 Base case

The base case is t = 1. The probability that s(1) = i is the thing that we
already gave the name πi to; it is one of the parameters we know if we know
what H is. The probability of X(1) given that s(1) = i is also something we
know; we gave it the name b[X(1), i]. Therefore

α(1, i) = b[X(1), i].πi

Coding this in C is easy, after shifting the indexing origin from 1 to 0.

for (i = 0; i < N; i++)
alpha[0][i] = b[X[0]][i] * pi[i];

This calculation is clearly O(N).

5.1.2 Step case

Suppose we know α(t, j) for j = 1 . . . N . How can we determine α(t+ 1, i)?
The probability of X(1 . . . t + 1) and s(t + 1) = i can be factored as (the

probability of X(1 . . . t) and s(t + 1) = i) and X(t + 1). With respect to the
emission of the last symbol, this is just like the base case. So α(t+ 1, i) will be
something times b[X(t+ 1), i].

The probability of X(1 . . . t) and s(t+ 1) = i is obviously related to α(t, i),
but that has s(t) = i instead of s(t+ 1) = i.

What we have to do is sum over all the possible intermediate states j.

α(t+ 1, i) = b[X(t+ 1), i].(
N∑

j=1

aij .α(t, j))

Coding this in C is easy too. I’m going to express it as determining α(t,−)
from α(t− 1,−), but the idea’s the same.

12



for (t = 1; t < T; t++) {
for (i = 0; i < N; i++) {

s = 0;
for (j = 0; j < N; j++) s += a[i][j] * alpha[t-1][j];
alpha[t][i] = b[X[t]][i] * s;

}
}

This calculation is clearly O(N2.T ).

5.1.3 The final probability

In order to determine which of several models ascribes the highest probability
to a sequence, we want to determine the probability of that sequence, not the
probability of that sequence and some state.

However, the HMM must be in some state at the end, so we just sum over
all possible final states.

Pr(X(1 . . . T )|H) =
N∑

i=1

α(T, i)

We can code that in C like this:

s = 0;
for (i = 0; i < N; i++) s += alpha[T-1][i];

This is clearly O(N), so the whole calculation is O(N2.T ).

5.1.4 Improving the cost

If we have a model, such as a profile HMM, where some transitions are forbidden,
we only have to sum over the allowed transitions.

Define pred(i) = {j ∈ 1 . . . N |aij 6= 0}.
Define succ(j) = {i ∈ 1 . . . N |aij 6= 0}.
Then α(t+ 1, i) = b[X(t+ 1), i].(

∑
j∈pred(i) aij .α(t, j)).

This turns the calculation from O(N2.T ) to O(E.T ) where E is the number
of non-zero elements in the A matrix. This is somewhere between N and N2.
For profile HMMs, E is O(N), making the whole calculation O(N.T ).

5.2 The Backward Calculations

Define β(t, i) to be the probability of observing the suffix X(t + 1 . . . T ) given
the HMM parameters H and the fact that s(t) = i. In symbols, Pr(X(t +
1 . . . T )|H ∧ s(t) = i). (Note how this dovetails with the definition of α.)

Here the induction works from T down, which is why it’s called the “back-
ward” algorithm.

13



5.2.1 Base Case

When t = T , the output sequence we have to explain is empty. The probability
of getting the empty sequence when the empty sequence is the only thing you
can get is clearly 1.

β(T, i) = 1

for (i = 0; i < N; i++) beta[T-1][i] = 1;

5.2.2 Step Case

As with the forward calculation, we have to multiply an emission probability, a
transition probability, and a rest-of-sequence probability.

β(t− 1, j) =
N∑

i=1

b[X(t), i].aij .β(t, i)

for (t = T-1; t > 0; t--) {
for (j = 0; j < N; j++) {

s = 0;
for (i = 0; i < N; i++)

s += b[X[t]][i] * a[j][i] * beta[t][i];
beta[t-1][j] = s;

}
}

This is clearly O(N2.T ), and can be reduced to O(E.T ) by summing over
succ(j) instead of all i.

5.3 Scaling

I have shown you simple C code for this problem. What I now have to admit
is that it doesn’t work. To see that it doesn’t work, let’s put all the pieces for
calculating α together. The following C program uses a simple HMM in which
every state is equally likely to be the starting state, all transitions are equally
likely, and all emissions are equally likely. The sequence to explain is 00. . . 00,
which is as likely as any other sequence in this model.

#define M 20 /* number of symbols */
#define N 50 /* number of states */
#ifdef BIG
#define T_MAX 280
#define T_INC 10
#define real double
#else
#define T_MAX 40

14



#define T_INC 1
#define real float
#endif

static int const X[T_MAX];
static real pi[N];
static real a[N][N];
static real b[M][N];

static void init(void) {
real f;
int i, j;

f = 1.0 / N;
for (i = 0; i < N; i++) pi[i] = f;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++) a[i][j] = f;
f = 1.0 / M;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++) b[i][j] = f;
}

static real prob(int T) {
real alpha[T_MAX][N];
real s;
int i, j, t;

for (i = 0; i < N; i++)
alpha[0][i] = b[X[0]][i] * pi[i];

for (t = 1; t < T; t++) {
for (i = 0; i < N; i++) {

s = 0;
for (j = 0; j < N; j++) s += a[i][j] * alpha[t-1][j];
alpha[t][i] = b[X[t]][i] * s;

}
}
s = 0;
for (i = 0; i < N; i++) s += alpha[T-1][i];
return s;

}

#include <stdio.h>

int main(void) {
int T;

15



init();
for (T = T_INC; T < T_MAX; T += T_INC)

printf("prob[%d] = %g\n", T, prob(T));
return 0;

}

I would encourage you to try this. In the default case, we run out of float
exponent range at T = 34. In the BIG case, we run out of double exponent
range somewhere about T = 250.

The problem is that while some sequence must be produced, each sequence
is extremely unlikely, and that the longer a sequence is, the less likely it is.

However, we can work around this problem. In order to compare probabil-
ities, any monotonic transformation of the probabilities will do. In particular,
it is enough to compare the logarithms of the probabilities.

The basic idea is to scale the αs to keep them in a reasonable range. One
way to do this is to ensure that

∑N
i=1 α(t, i) = 1 for all t.

5.3.1 Base Case

α′(1, i) = b[X(1), i].πi

c1 =
N∑

i=1

α′(1, i)

α̂(1, i) = α′(1, i)/c1

5.3.2 Step Case

α′(t+ 1, i) = b[X(t+ 1), i].(
N∑

j=1

aij .α̂(t, j))

ct+1 =
N∑

i=1

α′(t+ 1, i)

α̂(t+ 1, i) = α′(t+ 1, i)/ct+1

5.3.3 The final probability

Pr(X(1 . . . T )|H) = (
N∑

i=1

α̂(T, i)).(
T∏

t=1

ct)

log Pr(X(1 . . . T )|H) = log(
N∑

i=1

α̂(T, i)) +
T∑

t=1

log ct

All of this may be easier to see in C.

16



#define M 20 /* number of symbols */
#define N 50 /* number of states */
#ifdef BIG
#define T_MAX 280
#define T_INC 10
#define real double
#else
#define T_MAX 40
#define T_INC 1
#define real float
#endif

static int const X[T_MAX];
static real pi[N];
static real a[N][N];
static real b[M][N];
static real c[T_MAX];

static void init(void) {
real f;
int i, j;

f = 1.0 / N;
for (i = 0; i < N; i++) pi[i] = f;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++) a[i][j] = f;
f = 1.0 / M;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++) b[i][j] = f;
}

#include <math.h>

static real prob(int T) {
real alpha[T_MAX][N];
real s;
int i, j, t;

s = 0;
for (i = 0; i < N; i++) {

alpha[0][i] = b[X[0]][i] * pi[i];
s += alpha[0][i];

}
c[0] = s;
for (i = 0; i < N; i++) alpha[0][i] /= s;

17



for (t = 1; t < T; t++) {
for (i = 0; i < N; i++) {

s = 0;
for (j = 0; j < N; j++) s += a[i][j] * alpha[t-1][j];
alpha[t][i] = b[X[t]][i] * s;

}
s = 0;
for (i = 0; i < N; i++) s += alpha[t][i];
c[t] = s;
for (i = 0; i < N; i++) alpha[t][i] /= s;

}

s = 0;
for (i = 0; i < N; i++) s += alpha[T-1][i];
s = log(s);
for (t = 0; t < T; t++) s += log(c[t]);
return s;

}

#include <stdio.h>

int main(void) {
int T;
real const log10 = log(10);

init();
for (T = T_INC; T < T_MAX; T += T_INC)

printf("log10 prob[%d] = %g\n", T, prob(T)/log10);
return 0;

}

From the output of this compiled with -DBIG, we see that the common
logarithm of the probability of a 250-element sequence of zeros is -325.257, so
the probability is about 5.53× 10−326. While small, that isn’t zero.

5.4 Using vector functions

A common structure keeps on popping up in the code we’ve seen so far. It’s
the dot product of two vectors. It pays to write a function to compute the dot
product, and to call that. We’ll also use functions for summing a vector and
scaling it. Elementwise product is not the same as dot product. We have a use
for that too. We’ll also find a use for clearing the elements of a vector. Here
they are in C:

double dot(double const x[], double const y[], int n) {
double s;

18



s = 0.0;
for (int i = 0; i < n; i++) s += x[i]*y[i];
return s;

}

double sum(double const x[], int n) {
double s;

s = 0.0;
for (int i = 0; i < n; i++) s += x[i];
return s;

}

void scale(double x[], int n, double a) {
for (int i = 0; i < n; i++) x[i] /= a;

}

void product(
double d[], double const x[], double const y[], int n

) {
for (int i = 0; i < n; i++) d[i] = x[i]*y[i];

}

void clear(double d[], int n) {
for (int i = 0; i < n; i++) d[i] = 0.0;

}

Modern compilers are very good at optimising code like this. There is a
standard interface for vector and matrix operations called the Basic Linear
Algebra Subprograms, which includes functions like these. There are heavily
optimised implementations of the BLAS for all major machines. Fortran 90
even includes DOT() and SUM() in the language.

Let’s see what prob() looks like using our new functions.

static real prob(int T) {
real alpha[T_MAX][N];
real s;

product(alpha[0], b[X[0]], pi, N);
c[0] = sum(alpha[0], N);
scale(alpha[0], N, c[0]);

for (int t = 1; t < T; t++) {
for (int i = 0; i < N; i++) {

alpha[t][i] = b[X[t]][i] * dot(a[i], alpha[t-1], N);

19



}
c[t] = sum(alpha[t], N);
scale(alpha[t], N, c[t]);

}

s = log(sum(alpha[T-1], N));
for (int t = 0; t < T; t++) s += log(c[t]);
return s;

}

We have eliminated a lot of indexing, replacing it with function calls that
express the meaning of the loops. There is less and simpler code, so it is easier
to write and easier to read.

6 Problem 2 — Decoding

Given the parameters H of an HMM and an observed sequence 〈X1X2 . . . XT 〉,
what sequence of states ŝ(1) . . . ŝ(T ) would best explain that sequence?

6.1 Sequence of best states

One approach is to say “at each time t, which state i is the most probable?”
That is, which state is locally the most likely, regardless of what precedes or
follows?

Define γ(t, i) = Pr(s(t) = i|H,−→X ).
By the definition of conditional probability, this is (the probability of being

in state i at time t and observing −→X ) divided by (the probability of observing
−→
X ).

By the rule for “and” and our chosen decomposition of time into 1 . . . t
and t + 1 . . . T , the numerator is (the probability of being in state i at time t
and observing X(1) . . . X(t)) multiplied by (the probability of observing X(t+
1) . . . X(T ) given that the state was i at time t).

So

γ(t, i) =
α(t, i).β(t, i)

Pr(−→X |H)

=
α(t, i).β(t, i)∑N
i=1 α(t, i).β(t, i)

For each T , γ(t,−) is a probability distribution. The most likely state is
simply the one with the highest probability. So we have

ŝ(t) = arg max
1≤i≤N

γ(t, i)

20



6.1.1 Scaling

We’ve already seen that the alphas get very small. So do the betas. Just as we
have to scale the α(t, i) by a scale factor depending on t but not i, so we have
to scale the β(t, i) by a scale factor depending on t but not i.

Since the same scale factors are used in the numerator and the denominator
of γ(t, i) they cancel out, and we can compute

γ(t, i) =
α̂(t, i).β̂(t, i)∑N
i=1 α̂(t, i).β̂(t, i)

6.1.2 C Code

Let’s suppose we have α̂ in alpha[] and β̂ in beta[]. It turns out that we
shall have a use for γ in Problem 3, so we’ll store the computed values of γ in
gamma[].

static real alpha[T_MAX][N];
static real beta [T_MAX][N];
static real gamma[T_MAX][N];

static int s_hat[T_MAX];

static void compute_gamma(int T) {
real s;

for (int t = 0; t < T; t++) {
s = 0;
for (int i = 0; i < N; i++)

s += gamma[t][i] = alpha[t][i] * beta[t][i];
for (int i = 0; i < N; i++) gamma[t][i] /= s;

}
}

static void compute_s_hat(int T) {
int best_i;
real best_p;

for (int t = 0; t < T; t++) {
best_i = -1, best_p = -1.0;
for (int i = 0; i < N; i++)

if (gamma[t][i] > best_p)
best_i = i, best_p = gamma[t][i];

s_hat[t] = best_i;
}

}

21



The cost of computing the γ and the cost of computing the ŝ are both clearly
O(N.T ).

6.1.3 Using vector functions

Just as we introduced a ‘dot’ function to hide a loop and make it reusable (and
give the compiler a helping hand) so we can make a reusable ‘arg max’ function.

int arg_max(real const x[], int n) {
int best_i; /* 0 .. n-1 */
real best_x; /* x[best_i] */

assert(n >= 1);
best_i = 0;
best_x = x[0];
for (int i = 1; i < n; i++) {

if (x[i] > best_x) {
best_i = i;
best_x = x[i];

}
}
return best_i;

}

int arg_min(real const x[], int n) {
int best_i; /* 0 .. n-1 */
real best_x; /* x[best_i] */

assert(n >= 1);
best_i = 0;
best_x = x[0];
for (int i = 1; i < n; i++) {

if (x[i] < best_x) {
best_i = i;
best_x = x[i];

}
}
return best_i;

}

With these in our library, we can now write

static void compute_gamma(int T) {
for (int t = 0; t < T; t++) {

product(gamma[t], alpha[t], beta[t], N);
scale(gamma[t], N, sum(gamma[t], N));

}

22



}

static void compute_s_hat(int T) {
for (int t = 0; t < T; t++) {

s_hat[t] = arg_max(gamma[t]);
}

}

in which the relationship between the mathematics and the code may be easier
to see.

6.1.4 A difficulty

Suppose we have a model where some of the transition probabilities are zero.
Then the state sequence we get this way need not be a possible sequence:
a[ŝ(t)][ŝ(t+ 1)] could be 0.

That may not matter. If states correspond to local properties of a molecule,
such as being a transmembrane domain, we may be interested in local estimates.
We’re expecting some of these estimates to be wrong. In fact, if γ(t, ŝ(t)) < 1

2
the estimated states will be wrong more than half the time. So we may not
mind if a transition is impossible; the implied transition could have been wrong
because one of the estimated states was wrong anyway.

When we care is when we want to use the fitted state sequence as a sequence.

6.2 Best sequence of states

We’re now trying to find the state sequence ŝ(1 . . . T ) which is globally the most
likely. That is, we want to maximise Pr(ŝ|H,−→X ). Because we are only varying
ŝ, this works out to be equivalent to maximising Pr(ŝ ∧ −→X |H).

In general, if we are interested in “local” properties of the state sequence, the
sequence of best states may do, but if we are interested in “global” properties
of the state sequence, this is what we need. In particular, we want to compute
the frequency of transitions from globally consistent inferred sequences in the
training code.

There is a dynamic programming method for solving this problem. It is
called the Viterbi algorithm.

The Viterbi algorithm should remind you of the method for computing the
αs. The step where we walk backwards over an array of numbers to reconstruct
the optimal sequence should remind you of the same step in sequence alignment.

This time we need two numbers for each time and state: how good is this
state at this time, and how did we reach this state at this time.

δ(t, i) = max
ŝ(1..t−1)

Pr(s(1 . . . t− 1) = ŝ(1 . . . t− 1) ∧ s(t) = i ∧X(1 . . . t)|H)

That is, δ(t, i) is the highest probability of being in state i at time t, over
all state sequences that account for the first t observed symbols.

We can compute δ(t, i) by induction.

23



6.2.1 Base case for δ

At t = 1 there are no preceding states, so

δ(1, i) = b[X(1), i].πi

This is the same as α(1, i).

6.2.2 Step case for δ

δ(t+ 1, i) = b[X(t+ 1), i].(
N

max
j=1

aij .δ(t, j))

This is the same as the computation of α(t + 1, i) except for using “max”
instead of “sum”.

6.2.3 Final probability for δ

The score for the state sequence as a whole is the best score for any final state.
That is,

P̂ =
N

max
i=1

δ(T, i)

6.2.4 ψ, or, how did we get here?

For each time step other than the first, we need to record which transition was
the most likely one. This is the job of ψ. There is no base case as such because
the initial state has no predecessor. So

ψ(t− 1, i) = arg
N

max
j=1

aij .δ(t, j)

We use this to read off the estimated states. The final state is the one with
the highest δ. Preceding states are obtained from ψ.

ŝ(T ) = arg
N

max
i=1

δ(T, i)

ŝ(t− 1) = ψ(t− 1, ŝ(t))

6.2.5 C code

We don’t particularly want P̂ and we have no use for δ except to determine ŝ.
So we shall make δ a local variable. We don’t need to store both δ and ψ. But
we shall, in order to keep the code simple.

static void Viterbi(int T) {
real delta[T_MAX][N];
int psi [T_MAX][N];

24



int t;
int i, j;
real best_x;
int best_j;

for (i = 0; i < N; i++) {
delta[0][i] = b[X[0]][i] * pi[i];

}
for (t = 1; t < T; t++) {

for (i = 0; i < N; i++) {
best_x = 0, best_j = -1;
for (j = 0; j < N; j++) {

real x = a[i][j] * delta[t-1][j];
if (x > best_x) best_x = x, best_j = j;

}
psi[t][i] = best_j;
delta[t][i] = b[X[t]][i] * best_x;

}
}
best_x = 0, best_j = -1;
for (j = 0; j < N; j++)

if (delta[T-1][j] > best_x)
best_x = delta[T-1][j], best_j = j;

s_hat[T-1] = best_j;
for (t = T-1; t > 0; t--)

s_hat[t-1] = psi[t][s_hat[t]];
}

Since this has three nested loops (t: T , i: N , j: N) it is easy to see that the
cost is O(N2.T ). Since the innermost j loop only needs to consider values of J
for which aij 6= 0, it’s clear that the cost is, in general, O(E.T ).

Note that we never assign any value to psi[0][. . . ]. That’s not a mistake.
We never use those elements, so why initialise them?

6.2.6 Scaling

If you actually try the code above, be careful to check for δ underflowing to 0.
With the same M , N , π, A, and B as used in the previous scaling experiment,
this happens at t = 15 in single precision and t = 108 in double precision.

So yes, we do have to scale the δs. We may as well scale them so that∑N
i=1 δ(t, i) = 1. Scaling is allowed because we never compare δ(t, i) with δ(t′, i′)

for t′ 6= t; all that matters is the ratio of δs at the same time t.

static void Viterbi(int T) {
real delta[T_MAX][N];
int psi [T_MAX][N];
int t;

25



int i, j;
real scale;
real best_x;
int best_j;

for (i = 0; i < N; i++) {
delta[0][i] = b[X[0]][i] * pi[i];

}
for (t = 1; t < T; t++) {

scale = 0;
for (i = 0; i < N; i++) {

best_x = 0, best_j = -1;
for (j = 0; j < N; j++) {

real x = a[i][j] * delta[t-1][j];
if (x > best_x) best_x = x, best_j = j;

}
psi[t][i] = best_j;
delta[t][i] = b[X[t]][i] * best_x;
scale += delta[t][i];

}
for (i = 0; i < N; i++) delta[t][i] /= scale;

}
best_x = 0, best_j = -1;
for (j = 0; j < N; j++)

if (delta[T-1][j] > best_x)
best_x = delta[T-1][j], best_j = j;

s_hat[T-1] = best_j;
for (t = T-1; t > 0; t--)

s_hat[t-1] = psi[t][s_hat[t]];
}

There are two things about scaling:

• whenever you multiply lots of small numbers, or lots of big numbers,
you are likely to need scaling, even though you are using floating point
arithmetic.

• once you know you need it, it’s not that hard.

6.3 Other optimality criteria

We’ve looked at two extremes: “get the states right even if the sequence is
impossible” and “get the sequence right even if the states are less likely”. We
could choose other optimality criteria. One criterion that might be interesting
would be “get the transitions right”, that is, try to maximise the number of
correct adjacent pairs of states. That might be interesting, but we don’t have
the time for it.

26



7 Problem 3 — Learning

Here’s a taste of how it works.
A Hidden Markov Model H is a quintuple (S, V, π,A,B). The kind of data

we are dealing with tells us what V is. We choose the state set S, usually by
picking the number of states.

If we knew π, A, and B, we could decode sequences.
If we had decoded sequences, we could measure π, A, and B. The AWK

script hmminf.awk does this, given decoded sequences.

The Paradox of Life
Philosophical grook.

A bit beyond perception’s reach
I sometimes believe I see
that Life is two locked boxes, each
containing the other’s key.

— Piet Hein.

If only we had decoded sequences! If only we knew the parameters!
But what if we guessed values for the parameters, perhaps at random, de-

coded some sequences, and then re-estimated the parameters from that, then re-
decoded the sequences, then re-re-estimated the parameters, then re-re-decoded
the sequences, then . . .

This is precisely what the EM (Expectation/Maximisation) algorithm does.
You can prove that the algorithm converges to a result, but since it is a form
of hill-climbing, it may well converge to a local optimum. We can try repeating
the process with different initial random guesses, but we still don’t have an
optimality guarantee.

However, it would be a bad idea to work simply from decoded sequences. As
we work through the decoding process, we compute probabilities that the state
at each place is such and such. The decoding process described above them
picks the best alternative at each place. This throws away information. This is
not a good idea. Instead of computing (number of transitions i → j) divided
by (number of times in state i) we compute (sum of probabilities of transitions
i→ j) divided by (sum of probabilities that the state is i).

Instead of reading off transitions from a decoded sequence, then, we deter-
mine transition probabilities from the data.

Define ξ(t, i, j) to be the probability that state t is i and state t + 1 is j,
given the observed sequence −→X and the current HMM parameters A, B, π.

This is just the probability of

• observing the prefix X(1 . . . t) and ending in state i and

• a transition from state i to state j and

• the emission of symbol Xt+1 while in state j and

27



• observing the suffix X(t+ 2 . . . T ) given that s(t+ 1) = j

divided by the total probability of all such sequences.
But we already have names for these parts:

• α(t, i)

• aij

• bjX(t+1)

• β(t+ 1, j)

So

ξ(t, i, j) =
α(t, i)aijbjX(t+1)β(t+ 1, j)∑N

u=1

∑N
v=1 α(t, u)auvbvX(t+1)β(t+ 1, v)

Note that the numerator just multiplies four constants. At time t we can
compute the numerator in O(N2) time, we can sum the values to get the de-
nominator in O(N2) time, and we can divide the numerator values by the de-
nominator in O(N2) time, so the total cost of computing ξ is O(N2T ).

One point to watch here is that ξ(t, i, j) is only defined for 1 ≤ t ≤ T −1. In
programming we call this a “fencepost” issue: if you have a fence with T posts,
it has T − 1 panels.

Scaling is of course an issue, but we can handle it by using the scaled α̂
and β̂,

∑N
u=1

∑N
v=1 ξ(t, i, j) = 1, so we don’t have to worry about scaling the ξ

values themselves.
We’ve already named and computed the probability of s(t) being i given the

parameters and observed sequence. That’s γ(t, i). So to compute

• the sum of probabilities of transitions i→ j divided by

• the sum of probabilities that the state is i

we just compute

a′ij =
∑T−1

t=1 ξ(t, i, j)∑T−1
t=1 γ(t, i)

as the new estimate for A, and this clearly takes O(N2T ) time.
What about a new estimate for B?
For clarity, I want to use a convention you may not have met before. You

may have thought that treating false as 0 and true as 1 was a peculiarity of
C. (Or PL/I, if you’d ever heard of PL/I.) Not so. It’s a useful convention
in mathematics, called the “Iverson convention”. See Iverson_bracket in the
Wikipedia. The idea is that [e] is 1 if e is true, or 0 if e is false. Indeed,
it’s a very “strong” zero in that [e]d is defined to be zero when e is false,
even if d is not defined. It’s useful when we want to consider just some of the
numbers in a range. The book “Concrete Mathematics” by Graham, Knuth, and
Patashnik is well-nigh essential reading for computer scientists (as contrasted
with programmers), and provides motivation and many examples.

28



To estimate the probability of emitting symbol k, we have to confine our
attention to those positions where the observed symbol is k, and that’s exactly
what the Iverson bracket is for.

We divide the estimated number of times the state was i and the symbol
was k by the estimated number of times the state was i.

b′ik =
∑T

t=1 γ(t, i)[Xt = k]∑T
t=1 γ(t, i)

C code for computing B′ is

for (int i = 0; i < N; i++) {
clear(B_prime[i], M);

}
for (int t = 0; t < T; t++) {

for (int i = 0; i < N; i++) {
B_prime[i][X[k]] += gamma[t][i];

}
}
for (i = 0; i < N; i++) {

scale(B_prime[i], M, sum(B_prime[i], M));
}

What happened here?
We’ve turned the sum inside out.

σij =
T∑

t=1

e(t, i)[f(t, i) = j]

where the range of f is included in the range of j can be programmed as

for (int i = ...) clear(sigma[i], ...);
for (int t = ...) {

for (int i = ...) sigma[i][f(t,i)] += e(t,i);
}

One gain here is that we make a single pass over gamma[][], which your
computer’s cache will like. Indeed, if this were the only use of gamma[][], we
could fuse this calculation with compute_gamma() and never store more than a
single row of gamma[][] at all.

There’s one more parameter we have to update, and that’s π.

π′i = γ(1, i)

There’s a nasty snag here. When it comes to A′ and B′, every position in
the observed sequence gives us some information. But only the beginning tells
us anything about pi′. In order to estimate pi′ we need information from many
sequences, several times more sequences than we have states.

One way to arrange this is

29



for (int s = 0; s <= #sequences; s++) {
train(A_prime[s], B_prime[s], pi_prime[s],

A, B, pi, sequence[s]);
}
A’ = average(A_prime);
B’ = average(B_prime);
pi’ = average(pi_prime);

Of course we’d want to turn this inside out too. (How?)
In the lecture I discussed the idea of a “learning rate” or “momentum”

parameter. If you are trying to keep a running estimate xt of something, and
yt is the new information, you can use

xt+1 = µxt + (1− µ)yt+1

where µ = 0 means ignoring the past and µ = 1 means ignoring the present,
and a value somewhere in between lets you learn without jumping to conclusions
from noise.

One final point I want to mention is the difference between

• learning to convergence and

• learning to criterion

In learning to convergence, we repeat the training process over and over
again until the estimates of A, B, and π stop changing.

In learning to criterion, we set some quality criterion, such as the proportion
of a test collection that must be correctly classified, and repeat the training
process until this criterion is reached. If the process converges before criterion
is reached, we can try again with a different set of random initial parameters,
or we might decide to try having more hidden states. If the process reaches
criterion, we might not care if it converged or not. (Look up “over-fitting”).

We’ve now presented what it is we do to learn a Hidden Markov Model, but
not why it works.

These notes are based on the description of the algorithm in

A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, by Lawrence R. Rabiner, Proceedings of the
IEEE, Volume 77, number 2, February 1989.

which you can find on the Web. That tells us that “there is no known way to an-
alytically solve for the model which maximizes the probability of the observation
sequence. In fact, given any finite observation sequence as training data, there
is no optimal way of estimating the model parameters. We can, however, choose
. . . (A,B, π) such that [Pr(−→X |(A,B, π))] is locally maximized using an iterative
procedure such as the Baum-Welch method . . . or using gradient techniques”

What he’s talking about is the hill-climbing method described above, that
works by starting with some estimate of the parameters, and then repeats an

30



improvement step. This is a kind of algorithm that we talked about when
looking at inferring phylogenies. We saw then that you get a local optimum
which is not guaranteed to be the best result possible. As Rabiner puts it,
“It should be pointed out that the forward-backward algorithm leads to local
maxima only, and that in most problems of interest, the optimization surface is
very complex and has many local maxima”.

That paper also tells you where to find some of the mathematical back-
ground. A web search for “Hidden Markov Model” or “Baum-Welch algorithm”
or “EM algorithm” will tell you more than you ever wanted to know.

8 Profile Hidden Markov Models

We don’t have time to cover these in the lectures either, but do look them up
on the web. They are a kind of HMMs with a special structure. There are
states that represent insertion, states that represent deletion, and states that
represent no change to length.

31


