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COSC 348: Computing for Bioinformatics

Lecture 16: 
Microarray data analysis: introduction

Lubica Benuskova

http://www.cs.otago.ac.nz/cosc348/
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Microarrays measure gene expression
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Gene Expression

• Cells are different because of  differential gene expression (i.e. in 
different body organs different genes are expressed). 

• Gene is expressed by transcribing DNA into many copies of  
mRNA.

• mRNAs are then translated into protein molecules.

• Microarrays measure the level of  mRNA (i.e. concentration 
of  mRNA), and thus the level of  gene expression.
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Principle of  microarrays
• mRNA levels are proportional to the rate (or level) of  gene 

expression (how many copies of mRNA are produced by a gene)

• mRNA is isolated from cells and labeled with a fluorescent dye.

• Level of  mRNA is proportional to intensity of  fluorescent 
light emission, which is measured.
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Affymetrix microarrays
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Each gene mRNA is in one pixel

http://www.affymetrix.com

Intensity of  fluorescent light is 
proportional to the number of  mRNA 
strands in the pixel

Light intensity is converted into a 
number by a special reading device 6

Spotted or cDNA microarrays
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Image analysis in spotted arrays

• The 2 fluorescence images are overlaid, with the colours 
combined (red and green make yellow in the RGB scheme).

• Yellow spots indicate genes which were equally expressing 
in both conditions/ cell groups (i.e. both genotypes)

• Green spots indicate genes which were only expressing in 
the control condition (e.g., wild-type genotype).

• Red spots indicate genes which were only expressing in the 
treatment condition (e.g., mutant genotype).
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Fold changes in spotted arrays

• Differential expression at a spot is often reported as a fold 
change:

• In spotted arrays too, the light intensity is converted into a 
numerical value (fold change) by a special equipment.

• Often log2 scale is used:
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Microarray data – N x M matrix of  numbers

M samples / subjects

N
 g

en
es

WT = wild-type (i.e. all genes present in the genome); 
KO = gene knock-out (one gene is removed/silenced) 1010

Matrix description

• Microarray data can be viewed as an N×M matrix:

– Each of  the N rows represents a gene 

– Each of  the M columns represents a sample (e.g., patient, animal, 
etc.)

– Each matrix pixel represents the expression level of  a gene. It can 
be either an absolute value (e.g. Affymetrix GeneChip) or a relative 
expression ratio (e.g. spotted microarrays).

– A row is referred to as the “expression profile of the gene”.

– A column is referred to as the “expression profile of the sample”.
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Microarray data mining challenges

• too few records (samples, animals, patients), usually < 100 

• too many columns (genes), usually 1,000 < # < 10,000

• for exploration, a large set of  all relevant genes is desired

• for diagnostics or identification of  therapeutic targets, the 
smallest set of  genes is needed

• model needs to be explainable to biologists 
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Differential gene expression analysis
• The Experiment measures gene expression in rats:

– Two groups: (WT: wild-type rat, KO: gene knock-out rat)
– Question: Which genes are affected by the treatment? How

significant is the effect? We compare each pair of genes.
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Experiments and questions

• Two-condition comparison against some form of  control:
1. Gene knock-out against wild-type (KO vs. WT)
2. Subjects with a disease vs. healthy subjects 
3. Treated subjects vs. untreated subjects
4. Etc

• Question of  interest in these experiments are:
1. which genes are influenced by the missing gene?
2. which genes are responsible for the disease? 
3. which genes are influenced by the administered drug ?
4. Etc. 
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Goals of  a Microarray Experiment

1. Find the genes that 
change expression 
between experimental and 
control samples

2. Find patterns: Groups of  
biologically related genes 
that change expression 
together.

3. Classify new samples
based on a gene 
expression profile.
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Goal: develop a model to classify a new sample

Classification of  new 
sample: 

Class Health or 
Class Illness

Gene Value
D26528_at 193
D26561_cds1_at     -70
D26561_cds2_at    144
D26561_cds3_at      33
D26579_at 318
D26598_at 1764
D26599_at 1537
D26600_at 1204
D28114_at 707

 
Class Sno D26528 D63874 D63880  … 
health 2 193 4157 556  
health 3 129 11557 476  
health 4 44 12125 498  
health 5 218 8484 1211  
illness 51 109 3537 131  
illness 52 106 4578 94  
illness 53 211 2431 209  
…     
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Steps in microarray data analysis

Raw Data Image

Image Analysis of chip-cell intensity

mRNA level = matrix of numbers 

Normalisation and removal of non-biological variation

Statistical and computational analysis

Functional analysis (identify affected processes and pathways)
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Microarray data are very noisy
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Removal of  noise: thresholding & filtering

• Thresholding: Removing bad intensity spots is an important process of  
quality control. For example, the scanner has a measurement limit below 
which intensity values cannot be trusted. Values below the cut-off  point 
are usually removed (filtered) from the data because they are likely to be 
artifacts.
– Typically, the lowest intensity value of reliable data is 100–200 for 

Affymetrix data and 100–1000 for cDNA microarray data.

• Filtering: remove genes with insufficient variation between two 
conditions:
– e.g. MaximumValue − MinimumValue <  Δ (usually 500)
– MaximumValue / MinimumValue < r  (usually 5)

• Input for further processing is a matrix of  numbers.



19

Normalisation

• Gene expressions can differ by an order of magnitude. 

• Normalisation is needed for gene selection, clustering and 
classification models.

• Normalisation: mathematical transformation of values of gene 
expression from the interval [mmin, mmax] [m’min, m’max], either
– Linearly
– Logarithmically
– to Mean = 0, Std. Dev = 1 
– other

• Whatever the method: normalise each gene row separately!

• Linear Normalisation: Let m’ be the new normalised value of 
gene expression / mRNA level:

• This equation transforms values of gene expressions from the 
interval [mmin, mmax] [0, 1] uniformly.
– When m = mmin, then m’ = 0
– When m = mmax, then m’ = 1
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Linear normalisation
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• If the data have a huge value span like from 102 to 104, then it’s more 
suitable to use a logarithm, e.g. m’ = log m. (Either log10 or log2 ).

• This equation transforms values of gene expressions from the interval
[mmin, mmax] [m’min, m’max] nonuniformly.
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Logarithmic normalisation

Other equations for normalisation: 
http:\\people.revoledu.com\kardi\tutorial\Similarity\Normalization.html 22

What’s next after normalisation:

• Gene Selection
– find genes, which would be the best predictors (of  disease, 

treatment outcome, etc.)

• Clustering (Unsupervised, no class labels)
– Exploration and finding patterns 
– find new biological classes of  genes / refine existing ones

• Classification (Supervised, needs class labels)
– identify disease and its genetic profile
– predict outcome / select best treatment

• Functional / ontology analysis  
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Potential applications of  microarrays

• Biological and medical discovery

– discovery of  putative functions of  genes

– finding and refining biological pathways

– new and better molecular diagnostics / “personalised” medicine

– appropriate treatment for genetic signatures

– potential genetic targets for new therapies


