

M samples / subjects

ID	WT_1_R	WT_2_R	WT_3_R	WT_4_R	KO_1_R	KO_2_R	KO_3_R	KO_4_	
93173_at	242.3	240.1	292.9	216.3	180.1	172.6	147.3	152.4	
101937_s_at	316.7	346.7	438.3	228.5	133.7	201.3	253.3	287.4	
104272_s_at	286.2	351.9	354.6	339.1	180.6	432.7	210.2	53.6	
98590_at	1,066	748.8	1,011.4	607.7	584.5	791.8	355.8	530	
102425_at	264.7	241.4	450	134.3	138.3	242	212.6	125.4	
96608_at	1,979.8	1,913.2	2,367	1,616	1,270.5	1,191.6	1,401.2	1,330.9	
94407_at	339.3	360.4	283	309.1	236.9	329.3	196.8	89.4	
161149_r_at	1,947.7	1,179.4	1,708	1,251	1,297.1	594.3	1,070.5	1,055.8	
100144_at	4,821.6	3,639.6	4,415.5	3,846	3,268.5	2,438.5	2,799	2,537.4	
95134_at	498.6	853.1	881.2	582.8	255.1	859.3	288.7	457.8	
96921_at	746.1	410.6	858.8	667.4	534.8	444	475.4	320.3	
94689_at	534	438	456.2	555.2	466.6	404.3	295.2	146.4	
160268_at	737.7	1,099.2	1,138.4	978.8	806.5	978	587.8	245.3	
96180_at	609.5	516.9	540.1	312.8	344.8	191.8	427.9	347.1	
92618_at	4,888.8	4,234.2	4,703.7	2,994.9	4,093.1	2,938.9	2,150.2	1,969.2	
93203_f_at	111.8	186.8	112.9	158.1	100.8	67	119.9	90.6	
102574_at	171.3	81.7	230.9	123.3	107.9	50.6	112.3	132.4	
160966_at	221.2	310	454.3	242.5	238	196.2	330.7	50.8	
160827_at	294.5	341.1	360.4	170.3	231.6	289.4	196.4	58.1	
104116_at	1,836.3	829.3	1,258.7	1,561	722.3	810.4	943.9	1,172.1	
95434 at	1,207.8	1,294.8	1,314.6	1,513.8	878.2	773.9	715.8	1,181.5	

WT = wild-type (i.e. all genes present in the genome); KO = gene knock-out (one gene is removed/silenced)

Microarray data mining challenges

- too few records (samples, animals, patients), usually < 100
- too many columns (genes), usually 1,000 < # < 10,000
- for exploration, a large set of all relevant genes is desired
- for diagnostics or identification of therapeutic targets, the smallest set of genes is needed
- · model needs to be explainable to biologists

Fold changes in spotted arrays

 Differential expression at a spot is often reported as a fold change:

Fold change = $\frac{red intensity}{green intensity}$

• In spotted arrays too, the light intensity is converted into a numerical value (fold change) by a special equipment.

 $\log_{2}(Fold \ change) = \log_{2}\left(\frac{red \ intensity}{green \ intensity}\right) =$ $= \log_{2}(red \ intensity) - \log_{2}(green \ intensity)$

Matrix description

- Microarray data can be viewed as an N×M matrix:
 - Each of the N rows represents a gene
 - Each of the M columns represents a sample (e.g., patient, animal, etc.)
 - Each matrix pixel represents the *expression level* of a gene. It can be either an absolute value (e.g. Affymetrix GeneChip) or a relative expression ratio (e.g. spotted microarrays).
 - A row is referred to as the "expression profile of the gene".
 - A column is referred to as the "expression profile of the sample".

10

Differential gene expression analysis

- The Experiment measures gene expression in rats:
 - Two groups: (WT: wild-type rat, KO: gene knock-out rat)
 - Question: Which genes are affected by the treatment? How significant is the effect? We compare each pair of genes.

93173_at	242.3	240.1	292.9	216.3	180.1	172.6	147.3	152.4
101937_s_at	316.7	346.7	438.3	228.5	133.7	201.3	253.3	287.4
104272_s_at	286.2	351.9	354.6	339.1	180.6	432.7	210.2	53.6
98590_at	1,066	748.8	1,011.4	607.7	584.5	791.8	355.8	530
102425_at	264.7	241.4	450	134.3	138.3	242	212.6	125.4
96608_at	1,979.8	1,913.2	2,367	1,616	1,270.5	1,191.6	1,401.2	1,330.9
94407_at	339.3	360.4	283	309.1	236.9	329.3	196.8	89.4
161149_r_at	1,947.7	1,179.4	1,708	1,251	1,297.1	594.3	1,070.5	1,055.8
100144_at	4,821.6	3,639.6	4,415.5	3,846	3,268.5	2,438.5	2,799	2,537.4
95134_at	498.6	853.1	881.2	582.8	255.1	859.3	288.7	457.8
96921_at	746.1	410.6	858.8	667.4	534.8	444	475.4	320.3
94689_at	534	438	456.2	555.2	466.6	404.3	295.2	146.4
160268_at	737.7	1,099.2	1,138.4	978.8	806.5	978	587.8	245.3
96180_at	609.5	516.9	540.1	312.8	344.8	191.8	427.9	347.1
92618_at	4,888.8	4,234.2	4,703.7	2,994.9	4,093.1	2,938.9	2,150.2	1,969.2
93203_f_at	111.8	186.8	112.9	158.1	100.8	67	119.9	90.6
102574_at	171.3	81.7	230.9	123.3	107.9	50.6	112.3	132.4
160966_at	221.2	310	454.3	242.5	238	196.2	330.7	50.8
160827_at	294.5	341.1	360.4	170.3	231.6	289.4	196.4	58.1
104116_at	1,836.3	829.3	1,258.7	1,561	722.3	810.4	943.9	1,172.1
95434 at	1,207.8	1,294.8	1,314.6	1,513.8	878.2	773.9	715.8	1,181.5

• Input for further processing is a matrix of numbers.

18

Normalisation Linear normalisation • Gene expressions can differ by an order of magnitude. • *Linear Normalisation:* Let *m*' be the new normalised value of gene expression / mRNA level: Normalisation is needed for gene selection, clustering and classification models. $m' = \frac{m - m_{\min}}{m_{\max} - m_{\min}}$ Normalisation: mathematical transformation of values of gene expression from the interval $[m_{min}, m_{max}] \rightarrow [m'_{min}, m'_{max}]$, either - Linearly · This equation transforms values of gene expressions from the - Logarithmically interval $[m_{\min}, m_{\max}] \rightarrow [0, 1]$ uniformly. - to Mean = 0, Std. Dev = 1 - When $m = m_{\min}$, then m' = 0 other - When $m = m_{\text{max}}$, then m' = 1• Whatever the method: normalise each gene row separately! 19 What's next after normalisation: Logarithmic normalisation • If the data have a huge value span like from 10^2 to 10^4 , then it's more Gene Selection suitable to use a logarithm, e.g. $m' = \log m$. (Either \log_{10} or \log_2). - find genes, which would be the best predictors (of disease, treatment outcome, etc.) This equation transforms values of gene expressions from the interval $[m_{\min}, m_{\max}] \rightarrow [m'_{\min}, m'_{\max}]$ nonuniformly. • Clustering (Unsupervised, no class labels) - Exploration and finding patterns - find new biological classes of genes / refine existing ones · Classification (Supervised, needs class labels) - identify disease and its genetic profile - predict outcome / select best treatment · Functional / ontology analysis Other equations for normalisation: http://people.revoledu.com/kardi/tutorial/Similarity/Normalization.html Potential applications of microarrays · Biological and medical discovery - discovery of putative functions of genes - finding and refining biological pathways - new and better molecular diagnostics / "personalised" medicine - appropriate treatment for genetic signatures - potential genetic targets for new therapies