COSC 348: Computing for Bioinformatics

Lecture 16:

Microarray data analysis: introduction

Lubica Benuskova

http://www.cs.otago.ac.nz/cosc348/

Microarrays measure gene expression
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Gene expression

* Cells are different because of differential gene expression (i.e. in
different body organs different genes are expressed).

Principle of microarrays

* mRNA levels are proportional to the rate (or level) of gene
expression (how many copies of mRNA are produced by a gene)

* mRNA is isolated from cells and labeled with a fluorescent dye.

* Level of mRNA is proportional to intensity of fluorescent
light emission, which is measured.

* Gene is expressed by transcribing DNA into many copies of
mRNA.

¢ mRNAs are then translated into protein molecules.

* Microarrays measure the level of mRNA (i.e. concentration
of mRNA), and thus the level of gene expression.
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Affymetrix microarrays

Each gene mRNA is in one pixel

Raw image

> Intensity of fluorescent light is
proportional to the number of mRNA
strands in the pixel

» Light intensity is converted into a

. number by a special reading device
http://www.affymetrix.com

Cells from D 1
two samples _
mRNA =N 2

mRNA labelled with

green and rec@e‘s

-

|

8
~
/7

Green and red mRNAs

are combined
on one chip

4

colour
image

<

eSS s8s e SRR R
&s 2scs s &s 2siss
S 5
sesses sesses
@scssas @sCs s as

Copyright © 1998-9 by Jeremy Bubler




Image analysis in spotted arrays

* The 2 fluorescence images are overlaid, with the colours

combined (red and green make yellow in the RGB scheme).

indicate genes which were equally expressing
in both conditions/ cell groups (i.e.

* Green spots indicate genes which were only expressing in
the control condition (e.g., wild-type genotype).

* Red spots indicate genes which were only expressing in the

treatment condition (e.g., mutant genotype).

Fold changes in spotted arrays

* Differential expression at a spot is often reported as a fold
change:

red intensi

Fold change = 702

green intensity

* In spotted arrays too, the light intensity is converted into a
numerical value (fold change) by a special equipment.

* Often log, scale is used:

log,(Fold change)=log, m _
green intensity

=log, (red intensity) —log, (green intensity)
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Microarray data — N x M matrix of numbers

M samples / subjects
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WT = wild-type (i.e. all genes present in the genome);
KO = gene knock-out (one gene is removed/silenced)

Matrix description
* Microarray data can be viewed as an NxM matrix:
— Each of the N rows represents a gene

— Each of the M columns represents a sample (e.g;, patient, animal,
etc.)

— Each matrix pixel represents the expression level of a gene. It can
be cither an absolute value (e.g. Affymetrix GeneChip) or a relative
expression ratio (e.g. spotted microarrays).

— A row is referred to as the “expression profile of the gene”.

— A column is referred to as the “expression profile of the sample”.

Microarray data mining challenges

* too few records (samples, animals, patients), usually < 100

* too many columns (genes), usually 1,000 < # < 10,000

* for exploration, a large set of all relevant genes is desired

* for diagnostics or identification of therapeutic targets, the
smallest set of genes is needed

* model needs to be explainable to biologists

Differential gene expression analysis

¢ The Experiment measures gene expression in rats:
— Two groups: (WT: wild-type rat, KO: gene knock-out rat)

— Question: Which genes are affected by the treatment? How
significant is the effect? We compare each pair of genes.
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Experiments and questions

*  Two-condition comparison against some form of control:
Gene knock-out against wild-type (KO vs. WT)
Subjects with a disease vs. healthy subjects

Treated subjects vs. untreated subjects

Etc

o

*  Question of interest in these expetiments are:

which genes are influenced by the missing gene?
which genes are responsible for the disease?

which genes ate influenced by the administered drug ?
Etc.
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Goals of a Microarray Experiment

Find the genes that
change expression
between experimental and
control samples

Find patterns: Groups of
biologically related genes
that change expression
together.
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Classify new samples
based on a gene

expression profile.

Goal: develop a model to classify a new sample

Microarray chips Images scanned by laser
Gene Value
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& Datasets
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Steps in microarray data analysis
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Image Analysis of chip-cell intensity
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mRNA level = matrix of numbers
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Normalisation and removal of non-biological variation
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Statistical and computational analysis

l

Functional analysis (identify affected processes and pathways) 6

Of interest to us

Microarray data are very noisy
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Removal of noise: thresholding & filtering

Thresholding: Removing bad intensity spots is an important process of
quality control. For example, the scanner has a measurement limit below
which intensity values cannot be trusted. Values below the cut-off point
are usually removed (filtered) from the data because they are likely to be
artifacts.
— Typically, the lowest intensity value of reliable data is 100-200 for
Affymetrix data and 100-1000 for cDNA microarray data.

Filtering: remove genes with insufficient variation between two
conditions:

— e.g. MaximumValue — MinimumValue < A (usually 500)

— MaximumValue / MinimumValue <r (usually 5)

Input for further processing is a matrix of numbers.
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Normalisation

* Gene expressions can differ by an order of magnitude.

* Normalisation is needed for gene selection, clustering and
classification models.

* Normalisation: mathematical transformation of values of gene

expression from the interval [m,;,, m_ ] = [m’,;., m’, ], cither
— Linearly

— Logarithmically

— to Mean = 0, Std. Dev = 1

— other

* Whatever the method: normalise each gene row separately!

Linear normalisation
* Linear Normalisation: Let m’ be the new normalised value of
gene expression / mRNA level:
' m— mmin

m =
mmax - mmin

* This equation transforms values of gene expressions from the

interval [m,;,, M., = [0, 1] uniformly.
— When m = m,,, thenm’ =0
— When m = m,,,, thenm’ =1

max>

Logarithmic normalisation

* If the data have a huge value span like from 10 to 10¢, then it’s more
suitable to use a logatithm, e.g. m” = log m. (Either log,, or log, ).

* This equation transforms values of gene expressions from the interval
[M > Mina] = [ ins M 0] NONUnNiformly.

y=log, (z)

Other equations for normalisation:
http:\\people.revoledu.com\kardi\tutorial\Similarity\Normalization.html 2

What’s next after normalisation:

Gene Selection

— find genes, which would be the best predictors (of disease,
treatment outcome, etc.)

Clustering (Unsupetvised, no class labels)
— Exploration and finding patterns

— find new biological classes of genes / refine existing ones
Classification (Supervised, needs class labels)
— identify disease and its genetic profile

— predict outcome / select best treatment

Functional / ontology analysis

Potential applications of microarrays
* Biological and medical discovery

— discovery of putative functions of genes

— finding and refining biological pathways

— new and better molecular diagnostics / “personalised” medicine
— appropriate treatment for genetic signatures

— potential genetic targets for new therapies




