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Streamlined microarray analysis
normal tumor tumor normal normal tumor

ID_REF VALUE ABS_CALL VALUE ABS_CALL VALUE ABS_CALL VALUE ABS_CALL VALUE ABS_CALL VALUE ABS_CALL

AFFX-BioB-5_at 210.6 P 234.6 P 362.5 P 389 P 305.6 P 330.5 P
AFFX-BioB-M_at 393 P 327.8 P 501.4 P 816.5 P 542 P 440.8 P
AFFX-BioB-3_at 264.9 P 164.6 P 244.7 P 379.7 P 261.3 P 303.7 P
AFFX-BioC-5_at 738.6 P 676.1 P 737.6 P 1191.2 P 917 P 767.9 P
AFFX-BioC-3_at 356.3 P 365.9 P 423.4 P 711.6 P 560.3 P 484.9 P
AFFX-BioDn-5_at 566.3 P 442.2 P 649.7 P 834.3 P 599.1 P 606.9 P
AFFX-BioDn-3_at 3911.8 P 3703.7 P 4680.9 P 6037.7 P 4653.7 P 4232 P
AFFX-CreX-5_at 6433.3 P 5980 P 7734.7 P 10591 P 8162.1 P 8428 P
AFFX-CreX-3_at 11917.8 P 9376.7 P 11509.3 P 16814.4 P 13861.8 P 13653.4 P
AFFX-DapX-5_at 12.2 A 44.3 M 31.2 A 37.7 P 33.3 A 12.8 A
AFFX-DapX-M_at 57.8 M 42.5 A 79 M 48.8 P 39.5 A 39.2 A
AFFX-DapX-3_at 29.8 A 6.2 A 23.4 A 28.4 A 3.2 A 7.6 A
AFFX-LysX-5_at 15.3 A 16.2 A 15.6 A 16.7 A 3.1 A 3.9 A
AFFX-LysX-M_at 33.2 A 12 A 17.7 A 37.3 A 49.2 A 9.1 A
AFFX-LysX-3_at 40.7 M 10.7 A 36.2 A 22.1 A 22.8 A 28.2 A
AFFX-PheX-5_at 7.8 A 3 A 7.6 A 5.6 A 5 A 6.4 A
AFFX-PheX-M_at 4.2 A 4.8 A 6.8 A 6.1 A 3.7 A 5.5 A
AFFX-PheX-3_at 54.2 A 39.6 A 19.4 A 16.1 A 44.7 A 31.2 A
AFFX-ThrX-5_at 8.2 A 11.2 A 13.2 A 9.5 A 8.5 A 7.5 A
AFFX-ThrX-M_at 38.1 A 30.6 A 37.6 A 7.2 A 26.9 A 36.3 A
AFFX-ThrX-3_at 15.2 A 5 A 15 A 8.3 A 36.8 A 11.5 A
AFFX-TrpnX-5_at 11.2 A 11.8 A 22.2 A 22.1 A 8.9 A 35.6 A
AFFX-TrpnX-M_at 9 A 8.1 A 9.1 A 8.7 A 8.1 A 12 A
AFFX-TrpnX-3_at 19.8 A 12.8 A 11.8 A 43.2 M 17.4 A 10 A
AFFX-HUMISGF3A/M97935_5_at 82.7 P 120.7 P 92.7 P 46.4 P 55.9 P 46.5 P
AFFX-HUMISGF3A/M97935_MA_at 397.6 P 416.7 P 244.8 A 181.4 A 197.5 A 192.3 A
AFFX-HUMISGF3A/M97935_MB_at 206.2 P 303 P 300.8 P 253.5 P 195.3 P 216 P
AFFX-HUMISGF3A/M97935_3_at 663.8 P 723.9 P 812.1 P 666.1 P 629.4 P 754.1 P
AFFX-HUMRGE/M10098_5_at 547.6 P 405.9 P 6894.7 P 3496.1 P 1958.5 P 5799.4 P
AFFX-HUMRGE/M10098_M_at 239.1 P 175.8 P 3675 P 1348.6 P 695.9 P 2428.2 P
AFFX-HUMRGE/M10098_3_at 1236.4 P 721.4 P 9076.1 P 7795.9 P 4237.1 P 7890 P
AFFX-HUMGAPDH/M33197_5_at 19508 P 19267.1 P 22892 P 26584 P 29666.6 P 25038.1 P
AFFX-HUMGAPDH/M33197_M_at 18996.6 P 20610.4 P 21573.7 P 29936 P 30106.6 P 22380.2 P
AFFX-HUMGAPDH/M33197_3_at 18016.4 P 17463.8 P 20921.3 P 26908.3 P 28382.2 P 21885 P
AFFX-HSAC07/X00351_5_at 23294.6 P 21783.7 P 18423.3 P 21858.9 P 23517.1 P 19450.3 P
AFFX-HSAC07/X00351_M_at 25373.1 P 24922.8 P 22384.2 P 25760.2 P 27718.5 P 21401.6 P
AFFX-HSAC07/X00351_3_at 20032.8 P 20251.1 P 20961.7 P 23494.6 P 23381.2 P 21173.3 P

Input data Normalise

ClassificationGene selection
Clustering
Dim. reduction

Gene lists

Function
(Genome Ontology)

•t-test
•SNR

•k-neighbor
•SVM
•ANN

•K-means
•Hierarchy
•PCA

•linear
•log
•zero mean
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Differential gene expression
• The Experiment measures gene expression in rats:

– Two groups: (WT: wild-type rat, KO: gene knock-out rat)
– Question: Which genes are affected by the treatment? How

significant is the effect? We must compare each pair of genes.

We need multiple samples

• In order to determine whether a gene has undergone differential 
expression between two (or more) conditions, multiple 
observations in each condition are required (i.e multiple rats, 
patients, etc.).

• That is, many samples with the same condition must be measured 
because there are individual variations in gene expressions and 
also experimental errors in producing and processing microarrays.

• The task is to distinguish whether the variation in gene 
expression between two (or more) conditions is due to the 
condition itself or due to a natural variation among subjects in the 
same group or due to the experimental errors.

Statistics: what difference is significant?

• For gene k we have two vectors of expression values
– Condition 1: Xk = {xk1 xk2 xk3… xki … xkn(x)}T

– Condition 2: Yk = {yk1 yk2 yk3 …yki … ykn(y)}T

• Question 1: if we see a difference, are we actually observing 
differential expression, or is it due to something else (individual 
variation and/or experimental error)?

• Question 2: how big a change do we need to see for us to think 
we are observing differential expression? (i.e., what counts as 
significant differential expression?)
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Gene selection based on statistical significance

For each gene 
calculate the 
significance of  
the difference –
are the averages 
the same or 
different?

For each gene 
compare the 
average value 
of  the 
expression 
between two 
conditions.

Identify and 
select genes 
with high 
statistical 
significance for 
further analysis.



Population and sample

• The basic idea of statistics is this: we want to extrapolate from the data we 
have collected to make general conclusions about everybody. 

• There is a large population of data out there, and we have randomly sampled 
parts of it. Random: each unit has an equal chance to be selected. We analyze 
our sample to make inferences about the population.

• Clinical studies
– Sample: Subset of patients who were tested in our hospital.
– Population: All similar patients all over the world. 

• Laboratory research
– Sample: The data we actually collected. 
– Population: All the data we could have collected if we had repeated the 

experiment infinitely may times the same way on all mice in the world.
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Statistical hypothesis testing

• For each gene
– Pose Null Hypothesis (Ho) that gene is not affected
– Pose Alternative Hypothesis (Ha) that gene is affected
– Use statistical techniques to calculate the probability the gene 

is NOT affected (calculation of  the so-called p-value)
– If  p-value < some critical value α reject Ho and accept Ha

• The issues:
– Assumption of  normal (Gaussian) distribution of  data 
– Assumption of  equality of  variance. Use moderated variance, 

i.e. calculated based on the distribution of  variances across all 
genes to make it equal for all genes

– Multiple testing: ~10 000 genes per experiments
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Normal (Gaussian) probability distribution
• Many continuous variables follow a normal 

distribution, and it plays a special role in 
statistical tests.

• The x-axis represents the values of a 
particular variable (i.e. gene expression 
values)

• The y-axis represents the probability of that 
x value P(x).

• P(x) is calculated by diving the proportion 
of individuals of the population that have 
the x value of the variable by the total 
number of individuals n.

n
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68% of data

1 s.d. 1 s.d.

μ x

• Mean = average value of expression of the 
gene within a population (μ):

• Standard deviation (s.d. or σ) is a measure 
of how much the values x vary in relation 
to the mean. σ 2 is called variance:

• 68% of the normal distribution lies within 
one s.d. of the mean (distribution is 
symmetrical about the mean ).
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Normal (Gaussian) probability distribution
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Normalisation to zero mean

p = 0.05 p = 0.05

σ
μ−

=
xZ

Normalisation to 0 mean is 
transformation to a normal 
distribution with mean = 0, 
s.d. = 1 using a transform:

0.05 = p-value: probability of getting a result this extreme or 
more extreme given the null hypothesis is true.
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Student’s t-test: are the means equal or not?

Ho

Ha

Population 1

Population 2

Population 1 Population 2

• For each gene
– Pose the null hypothesis (Ho) that 

gene is not affected, i.e. the two 
means are equal

– Pose Alternative Hypothesis (Ha) 
that gene is affected, i.e. the two 
means are not equal

– Calculate t-statistics and the p-value
– If  p-value < some critical value α

reject Ho and accept Ha



13

Independent group t-test

• Used to compare the means of  two independent groups. 

• Assumptions:  Subjects are randomly assigned to one of  two groups. 
One group receives treatment. The distribution of  the values being 
compared are normal with approximately equal variances. 

• Test: The hypotheses for the comparison of  two independent groups 
are:
– Ho: μ1 = μ2 (means of  the two groups are equal)
– Ha: μ1 ≠ μ2 (means of  the two group are not equal)

• A low p-value for this test (less than 0.05 for example) means that there 
is evidence to reject the null hypothesis H0 in favour of  the alternative 
hypothesis Ha. 
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• Assumptions: The observed data are from the same subject or from a 
matched subject and are drawn from a population with a normal 
distribution. 

• Characteristics: Same subjects are often tested in a before and after 
situation (across time, with some intervention such as a therapy), or 
subjects are paired such as with twins, or with subject as alike as possible. 

• Test: The paired t-test is actually a test that the difference between the 
two observations is 0. So, if  d represents the difference between 
observations, the hypotheses are: 
– Ho: d = 0 (the difference between the two observations is 0) 
– Ha: d ≠ 0 (the difference is not 0) 

Paired t-test
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Calculating t-statistic

• First calculate t statistic and then find the p value

• For the paired t-test, t is calculated using the following formula:

n is the number of pairs being tested.

• For an unpaired (independent group) t-test, the following formula is
used:

Where σ (x) is the standard deviation of x and n(x) is the number of elements in X.

n
d

dmeant )(
)(

σ= Differences di: iii yxd −=

)(
)(

)(
)(

)()(
22

yn
y

xn
x

ymeanxmeant
σσ +

−
=

16

Calculating p values
• We need to know the value of p:

– We have access to a function, which calculates p for a given critical
value of t and df (degrees of freedom)

– or alternatively have a table of critical t values indexed by tp and
df = n−1.

p-value

Critical values of 
t-statistic for 
given df

Values p and threshold α
• Once we have calculated a gene-specific t-test statistic, we 

determine the p-value for each gene, pk.

• The p-value = 0.01 means that random sampling from identical 
populations (if they were identical) would lead to a difference 
smaller than we observed in 99% of experiments and larger than 
we observed in 1% of experiments.

• If p-value < α, reject Ho and accept Ha.

• We speak about statistically significant difference in gene 
expression between two conditions only when the corresponding 
p-value is small enough. Question: what does small mean?
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Threshold of  significance α

• We have to decide how small a p-value needs to be for us to
think that the difference we are observing cannot be explained
solely by chance (i.e. noise).

• When we test a single hypothesis, it is common to fix a type I
error rate of α ≤ 0.05 (called level of significance).

• Type I error: reject null hypothesis when it is true (i.e., say a
gene is differentially expressed when it really isn’t).

• Type II error: fail to reject the null hypothesis when it is false
(i.e., say a gene is not differentially expressed when it really is).
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Frequency of type I errors

• Using a type I error rate of α = 0.05 means that we are willing
to make a type I error in 5% of our hypothesis tests.

• That is, if α = 0.05, 5% of the time that the Ho is true, we will
say that it’s false.

• So, for every 20 hypothesis tests we perform, on average we
expect 1 type I error.

• What if we are performing =10,000 hypothesis tests for 10,000
genes?

• The results will be 500 TYPE I ERRORS!
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Control of frequency of type I errors

• Adjusting a type I error rate of α = 0.001 means we will have just 1
error per 10,000 hypotheses tests, which is acceptable. But this a
value is a way too strict, and maybe no gene will meet it.

• There are other more sophisticated methods of control of frequency
of type I error available, called Multiple Comparison Procedures.

• These procedures guarantee that “family-wise error” ≤ α, where a
“family-wise error” is defined to be the occurrence of a single type I
error in the entire family (set) of hypotheses being tested.
– The most popular methods are the Bonferoni correction, Holm

correction and the False Discovery Rate introduced by Benjamini
and Hochberg (Bonferoni correction is part of SPSS).
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Signal to noise ratio (SNR)

• Another very simple and popular gene selection measure.

• Signal to Noise ratio (SNR) is a measure used in science and 
engineering to quantify how much a signal has been corrupted 
by noise. 

• It is defined as the ratio of  signal power to the noise power 
corrupting the signal. 

• A ratio higher than 1:1 indicates more signal than noise. 

• While SNR is commonly used for electrical signals, it can be 
applied to any form of  signal.
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Signal to noise ratio (SNR)
• A general definition of  SNR is the reciprocal of  the coefficient of  

variation, i.e., the ratio of  mean  to standard deviation of  a signal. 
Indices 1 and 2 apply for condition 1 and 2, respectively.

• Signal to Noise ratio (SNR) = 

• NO assumptions about normality or variances 

• The bigger the cut off  value the better SNR

• Used by NeuCom (software for data processing and classification) 
developed at AUT you will use in labs.
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Actual gene selection

• Gene selection based on t-test: rank the genes by p value and 
select the top n = 50 genes based on their p.

• Gene selection based on signal to noise ratio (SNR): order the 
genes from largest SNR to lowest and select the top n = 50 
genes.

• The goal is to select genes, which have the biggest differential 
expression between two conditions, that is those genes that 
would be the best predictors of  difference between the 
different conditions.
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What’s next?

• After the genes have been selected:

• Clustering and principal component analysis
– Data Exploration 
– finding patterns

• Classification
– Classify samples based on particular genetic profile
– predict treatment outcome / select the best treatment

• Functional analysis:  compare/evaluate functions of  genes


