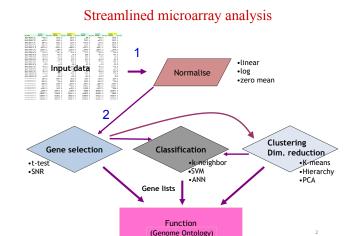


Lecture 17: Microarray Data Analysis: gene selection

Lubica Benuskova

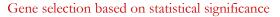
http://www.cs.otago.ac.nz/cosc348/

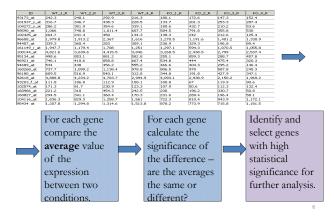
Differential gene expression


• The Experiment measures gene expression in rats:

- Two groups: (WT: wild-type rat, KO: gene knock-out rat)
- Question: Which genes are affected by the treatment? How significant is the effect? We must compare each pair of genes.

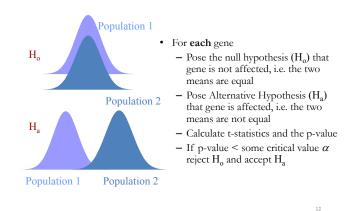
ID	WT_1_R	WT_2_R	WT_3_R	WT_4_R	KO_1_R	KO_2_R	KO_3_R	KO_4_R
93173_at	242.3	240.1	292.9	216.3	180.1	172.6	147.3	152.4
101937_s_at	316.7	346.7	438.3	228.5	133.7	201.3	253.3	287.4
104272_s_at	286.2	351.9	354.6	339.1	180.6	432.7	210.2	53.6
98590_at	1,066	748.8	1,011.4	607.7	584.5	791.8	355.8	530
102425_at	264.7	241.4	450	134.3	138.3	242	212.6	125.4
96608_at	1,979.8	1,913.2	2,367	1,616	1,270.5	1,191.6	1,401.2	1,330.9
94407_at	339.3	360.4	283	309.1	236.9	329.3	196.8	89.4
161149_r_at	1,947.7	1,179.4	1,708	1,251	1,297.1	594.3	1,070.5	1,055.8
100144_at	4,821.6	3,639.6	4,415.5	3,846	3,268.5	2,438.5	2,799	2,537.4
95134_at	498.6	853.1	881.2	582.8	255.1	859.3	288.7	457.8
96921_at	746.1	410.6	858.8	667.4	534.8	444	475.4	320.3
94689_at	534	438	456.2	555.2	466.6	404.3	295.2	146.4
160268_at	737.7	1,099.2	1,138.4	978.8	806.5	978	587.8	245.3
96180_at	609.5	516.9	540.1	312.8	344.8	191.8	427.9	347.1
92618_at	4,888.8	4,234.2	4,703.7	2,994.9	4,093.1	2,938.9	2,150.2	1,969.2
93203_f_at	111.8	186.8	112.9	158.1	100.8	67	119.9	90.6
102574_at	171.3	81.7	230.9	123.3	107.9	50.6	112.3	132.4
160966_at	221.2	310	454.3	242.5	238	196.2	330.7	50.8
160827_at	294.5	341.1	360.4	170.3	231.6	289.4	196.4	58.1
104116_at	1,836.3	829.3	1,258.7	1,561	722.3	810.4	943.9	1,172.1
95434 at	1.207.8	1.294.8	1.314.6	1.513.8	878.2	773.9	715.8	1.181.5


Statistics: what difference is significant?


- For gene k we have two vectors of expression values
 - Condition 1: $X_k = \{x_{k1} x_{k2} x_{k3} \dots x_{ki} \dots x_{kn(x)}\}^T$
 - Condition 2: $Y_k = \{y_{k1} \ y_{k2} \ y_{k3} \ \dots \ y_{kn(y)}\}^T$
- Question 1: if we see a difference, are we actually observing differential expression, or is it due to something else (individual variation and/or experimental error)?
- Question 2: how big a change do we need to see for us to think we are observing differential expression? (i.e., what counts as significant differential expression?)

We need multiple samples

- In order to determine whether a gene has undergone differential expression between two (or more) conditions, multiple observations in each condition are required (i.e multiple rats, patients, etc.).
- That is, many samples with the same condition must be measured because there are individual variations in gene expressions and also experimental errors in producing and processing microarrays.
- The task is to distinguish whether the variation in gene expression between two (or more) conditions is due to the condition itself or due to a natural variation among subjects in the same group or due to the experimental errors.


Population and sample Statistical hypothesis testing The basic idea of statistics is this: we want to extrapolate from the data we • For each gene have collected to make general conclusions about everybody. - Pose Null Hypothesis (H_o) that gene is not affected - Pose Alternative Hypothesis (H_a) that gene is affected There is a large population of data out there, and we have randomly sampled parts of it. Random: each unit has an equal chance to be selected. We analyze - Use statistical techniques to calculate the probability the gene our sample to make inferences about the population. is NOT affected (calculation of the so-called p-value) - If p-value < some critical value α reject H_o and accept H_a Clinical studies - Sample: Subset of patients who were tested in our hospital. The issues: - Population: All similar patients all over the world. - Assumption of normal (Gaussian) distribution of data - Assumption of equality of variance. Use moderated variance, Laboratory research i.e. calculated based on the distribution of variances across all - Sample: The data we actually collected. genes to make it equal for all genes - Population: All the data we could have collected if we had repeated the - Multiple testing: ~10 000 genes per experiments experiment infinitely may times the same way on all mice in the world. Normal (Gaussian) probability distribution Normal (Gaussian) probability distribution ٠ Many continuous variables follow a normal • Mean = average value of expression of the distribution, and it plays a special role in gene within a population (μ): $\frac{1}{n} \mu = \frac{1}{n} \sum_{i=1}^{n} x_i$ statistical tests. P(x)P(x)The x-axis represents the values of a • Standard deviation (s.d. or σ) is a measure particular variable (i.e. gene expression 68% of data of how much the values x vary in relation values) to the mean. σ^2 is called variance: The y-axis represents the probability of that $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$ x value P(x). P(x) is calculated by diving the proportion 68% of the normal distribution lies within $P(x) = \frac{n(x)}{x}$ of individuals of the population that have one s.d. of the mean (distribution is the *x* value of the variable by the total symmetrical about the mean). number of individuals n.

Normalisation to 0 mean is $\frac{-(x-\mu)^2}{2}$ $P(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{1}{\sigma\sqrt{2\pi}}\right)$ 2σ transformation to a normal distribution with mean = 0, for $-\infty < x < \infty$ s.d. = 1 using a transform: $x - \mu$ p = 0.05p = 0.05 **0.05 = p-value:** probability of getting a result this extreme or

Normalisation to zero mean

more extreme given the null hypothesis is true.

Student's t-test: are the means equal or not?

Independent group t-test

- Used to compare the means of two independent groups.
- Assumptions: Subjects are randomly assigned to one of two groups. One group receives treatment. The distribution of the values being compared are normal with approximately equal variances.
- Test: The hypotheses for the comparison of two independent groups are:
 - H_0 : $\mu_1 = \mu_2$ (means of the two groups are equal)
 - H_a : $\mu_1 \neq \mu_2$ (means of the two group are not equal)
- A low p-value for this test (less than 0.05 for example) means that there
 is evidence to reject the null hypothesis H₀ in favour of the alternative
 hypothesis H_a.

Calculating t-statistic

- First calculate *t* statistic and then find the p value
- For the paired *t*-test, *t* is calculated using the following formula:

 $t = \frac{mean(d)}{\sigma(d)/\sqrt{n}}$ Differences d_i : $d_i = x_i - y_i$ n is the number of pairs being tested.

• For an unpaired (independent group) *t*-test, the following formula is used: mean(x)-mean(y)

$$= \frac{\sqrt{\sigma^{2}(x)/n(x) + \sigma^{2}(y)/n(y)}}{\sqrt{\sigma^{2}(x)/n(x) + \sigma^{2}(y)/n(y)}}$$

Where $\sigma(x)$ is the standard deviation of x and n(x) is the number of elements in X.

Values p and threshold α

- Once we have calculated a gene-specific *t*-test statistic, we determine the p-value for each gene, p_k.
- The p-value = 0.01 means that random sampling from identical populations (if they were identical) would lead to a difference smaller than we observed in 99% of experiments and larger than we observed in 1% of experiments.
- If p-value $< \alpha$, reject H_o and accept H_a.
- We speak about statistically significant difference in gene expression between two conditions only when the corresponding p-value is small enough. Question: what does small mean?

Paired t-test

- Assumptions: The observed data are from the same subject or from a matched subject and are drawn from a population with a normal distribution.
- Characteristics: Same subjects are often tested in a before and after situation (across time, with some intervention such as a therapy), or subjects are paired such as with twins, or with subject as alike as possible.
- **Test:** The paired t-test is actually a test that the difference between the two observations is 0. So, if *d* represents the difference between observations, the hypotheses are:
 - $H_0: d = 0$ (the difference between the two observations is 0)
 - $H_a: d \neq 0$ (the difference is not 0)

Calculating p values

- We need to know the value of p:
 - We have access to a function, which calculates p for a given critical value of t and df (degrees of freedom)
 - or alternatively have a table of critical *t* values indexed by t_p and df = n-1.

df	t _{0.10}	t _{0.05}	t _{0.025}	t _{0.01}	t _{0.005} ←	p-value
1	3.078	6.314	12.706	31.821	63.657	r
2	1.886	2.920	4.303	6.965	9.925	
3	1.638	2.353	3.182	4.541	5.841	
4	1.533	2.132	2.776	3.747	4.604	
5	1.476	2.015	2.571	3.365	4.032	
						> Critical values of
6	1.440	1.943	2.447	3.143	3.707	Clitical values of
7	1.415	1.895	2.365	2.998	3.499	t-statistic for
8	1.397	1.860	2.306	2.896	3.355	
9	1.383	1.833	2.262	2.821	3.250	given df
10	1.372	1.812	2.228	2.764	3.169	
œ	1.282	1.645	1.960	2.326	2.576)
						16

Threshold of significance α

- We have to decide how small a p-value needs to be for us to think that the difference we are observing cannot be explained solely by chance (i.e. noise).
- When we test *a single* hypothesis, it is common to fix a type I error rate of $\alpha \leq 0.05$ (called level of significance).
- Type I error: reject null hypothesis when it is true (i.e., say a gene is differentially expressed when it really isn't).
- Type II error: fail to reject the null hypothesis when it is false (i.e., say a gene is not differentially expressed when it really is).

18

Frequency of type I errors	Control of frequency of type I errors				
Using a type I error rate of $\alpha = 0.05$ means that we are willing to make a type I error in 5% of our hypothesis tests.	• Adjusting a type I error rate of $\alpha = 0.001$ means we will have just 1 error per 10,000 hypotheses tests, which is acceptable. But this a value is a way too strict, and maybe no gene will meet it.				
That is, if $\alpha = 0.05$, 5% of the time that the H _o is true, we will say that it's false.	 There are other more sophisticated methods of control of frequency of type I error available, called Multiple Comparison Procedures. These procedures guarantee that "family-wise error" ≤ α, where a "family-wise error" is defined to be the occurrence of a single type I error in the entire family (set) of hypotheses being tested. The most popular methods are the Bonferoni correction, Holm correction and the False Discovery Rate introduced by Benjamini 				
So, for every 20 hypothesis tests we perform, on average we expect 1 type I error.					
What if we are performing =10,000 hypothesis tests for 10,000 genes?					
The results will be 500 TYPE I ERRORS!	and Hochberg (Bonferoni correction is part of SPSS).				
Signal to noise ratio (SNR)	Signal to noise ratio (SNR)				
Another very simple and popular gene selection measure.	 A general definition of SNR is the reciprocal of the coefficient of variation, i.e., the ratio of mean to standard deviation of a signal. Indices 1 and 2 apply for condition 1 and 2, respectively. 				
Signal to Noise ratio (SNR) is a measure used in science and engineering to quantify how much a signal has been corrupted by noise.	• Signal to Noise ratio (SNR) =				
It is defined as the ratio of signal power to the noise power corrupting the signal.	$\frac{(mean_1 - mean_2)}{(\sigma_1 + \sigma_2)} \ge cut \text{ off value}$				
A ratio higher than 1:1 indicates more signal than noise.	NO assumptions about normality or variances				
While SNR is commonly used for electrical signals, it can be applied to any form of signal.	• The bigger the cut off value the better SNR				
applied to any form of signal.	 Used by NeuCom (software for data processing and classification) developed at AUT you will use in labs. 				
Actual gene selection	What's next?				
Gene selection based on <i>t</i> -test: rank the genes by p value and	• After the genes have been selected:				
select the top $n = 50$ genes based on their p.	Clustering and principal component analysis Data Eucloration				
Gene selection based on signal to noise ratio (SNR): order the genes from largest SNR to lowest and select the top $n = 50$	 Data Exploration finding patterns 				
genes.	Classification				
The goal is to select genes, which have the biggest differential expression between two conditions, that is those genes that	 Classify samples based on particular genetic profile predict treatment outcome / select the best treatment 				
would be the best predictors of difference between the different conditions.	Functional analysis: compare/evaluate functions of genes				
23	24				