COSC 348: Computing for Bioinformatics

Lecture 19: NeuCom \& PCA

Lubica Benuskova
http://www.cs.otago.ac.nz/cosc348/

Example: data set C from Pomeroy et al.

- They wanted to find a genetic profile that distinguishes patients who are alive after treatment ('survivors') compared with those who succumbed to their disease ('failures').
- Minimum follow-up of 24 months for surviving patients, overall median 41.5 months.
- Data set C has 60 samples containing 21 treatment failures and 39 medulloblastoma survivors.
- Let us select the 4 genes with the highest SNR.

Principal component analysis (PCA)

- The goal is to discover a new set of axes against which to represent, describe or evaluate the data
- For more effective reasoning, insights, or better classification
- New axis represents a smaller set of factors that are combinations of original gene expressions: hence the dimension reduction
- Better representation of data without losing much information and reduction of noise
- Universal data preprocessing method: can build more effective data analyses on the reduced-dimensional space: classification, clustering, pattern recognition.

Basic concepts of PCA

- We want a smaller set of variables that explain most of the variance in the original data in more compact and insightful form.
- If two variables/genes are highly correlated or dependent
- They are likely to represent highly related phenomena
- combining them to form a single measure is reasonable
- So we want to combine related variables, and focus on dimensions, along which the observations have high variance
- Based on an assumption that these directions are interesting, something is happening if the variance is big.

Principal component analysis (PCA)

- Most common form of factor analysis.
- Areas of large variance in data are where items can be best discriminated - Areas of greatest "information" in the data
- The new variables/dimensions / components
- Are linear combinations of the original ones
- Are uncorrelated with one another and orthogonal in original dimension space
- Capture as much of the original variance in the data as possible
- Are called Principal Components (PC)

Notions we work with in PCA

- Vectors of (gene expression) values are represented as a cloud of points in a multidimensional space with an axis for each of the N variables/genes
- The centroid of the points is defined by the mean of each variable/gene j (the sum goes through all M samples/subjects):

$$
\mu_{j}=\frac{1}{M} \sum_{i=1}^{M} x_{j i}
$$

- The variance of each variable/gene is the average squared deviation of its M values around the mean of the j th variable/gene:

$$
\sigma_{j}^{2}=\frac{1}{M} \sum_{i=1}^{M}\left(x_{j i}-\mu_{j}\right)^{2}
$$

Computing the principal components

- We put covariances into \mathbf{C}, the covariance matrix and then we transform it into a diagonal form:

$$
\left(\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

- The diagonal elements of this transformed diagonal matrix are the eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$, and we denote the corresponding eigenvectors by v_{1}, \ldots, v_{N}
- Eigenvector and eigenvalue is defined by: $\lambda_{k} v_{k}=\mathbf{C} v_{k}$
- Each eigenvalue $\boldsymbol{\lambda}$ denotes the amount of variability captured along that particular new dimension.

Eigenvectors are principal components
$C v_{1}=\lambda_{1} v_{1}$
$C v_{2}=\lambda_{2} v_{2}$
\vdots
$C v_{k}=\lambda_{k} v_{k}$
\vdots
$C v_{N}=\lambda_{N} v_{N}$

- Eigenvectors for k largest eigenvalues are the first k principal components.
- The $1^{\text {st }}$ principal component v_{1} is the eigenvector for the largest eigenvalue λ_{1};
- in the orthogonal space, the eigenvector with second largest eigenvalue is the $2^{\text {nd }}$ PC, etc.

Geometric meaning

- Calculation of PCs geometrically: centering followed by rotation to align the $1^{\text {st }} \mathrm{PC}$ according to the direction of maximal variance.

Dimensionality reduction

We can ignore the components of lesser significance.

We do lose some information, but not much

- N dimensions in original data
- calculate N eigenvectors and eigenvalues
- choose only the first k eigenvectors, based on their eigenvalues
- final data set has only $k<N$ dimensions

Example: data set A from Pomeroy et al.

- Data set A: expression profiles of 42 samples (10 medulloblastomas, 5 CNS AT/RTs, 5 renal and extrarenal rhabdoid tumours, and 8 supratentorial PNETs, as well as 10 non-embryonal brain tumours (malignant glioma) and 4 normal human cerebella).
- SNR was applied to select the differentially expressed genes when compared with normal cerebella.
- They applied PCA to determine whether the different types of tumours could be molecularly distinguished, i.e. whether they are separable.

Example of PCA

- Distribution of data along the first 3 principal component axes. Each new axis is a linear combination of the old axes (i.e. original gene expression values).

