COSC 348: Computing for Bioinformatics

Lecture 21

Gene Regulatory Networks 1 -Boolean networks

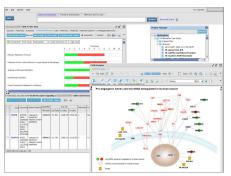
Lubica Benuskova

http://www.cs.otago.ac.nz/cosc348/

GRN inference by IPA (http://www.ingenuity.com/)

Ingenuity® Pathway Analysis (IPA) software enables GRN inference based on the Ingenuity®Knowledge Base containing information on genes, proteins, drugs, etc. and molecular relationships.

•



Modelling by Boolean network: assumptions

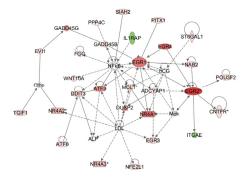
- Each gene is represented by a node in a *directed graph*, in which there is an arrow from one node/gene to another if and only if there is a causal link between the two nodes/genes.
- Each node in the graph can be in one of two states: on or off.
- "on" corresponds to the gene being expressed above some threshold; "off" corresponds to the gene being expressed below that threshold (i.e. gene expressions are binarised or discretised).
- Time is viewed as proceeding in discrete steps. At each step, the new state of a node is a *Boolean function* of the prior states of the nodes with arrows pointing towards it.

GRN inference versus modelling GRN dynamics

- GRN inference means a reconstruction of GRN based on experimental data.
- Modelling **the GRN dynamics** means simulating the changes of gene expression levels over time.
- For that we need a particular model:
 Boolean Networks
 - Weight matrices
 - Bayesian Networks
 - Differential equations
 - other

GRN as a matrix of interactions

• Result of IPA software = matrix of interactions between genes. Genes are chosen e.g. based on selection applied to microarray data.



Boolean network model: formal equations

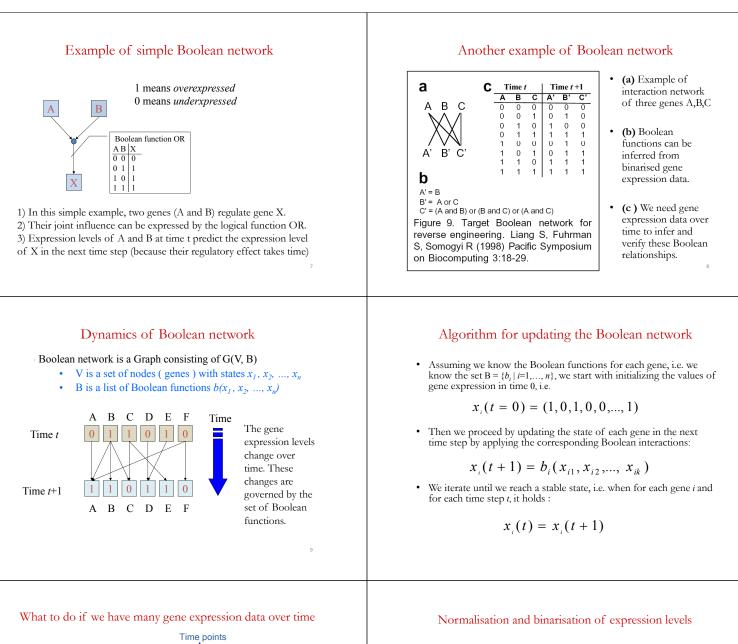
Boolean network is a graph G(V, B), with a set of nodes (vertices)
 V={v_i | i = 1,..., n}, together with a set of Boolean functions
 B = {b_i | i=1,..., n}, such that for k ≤ n

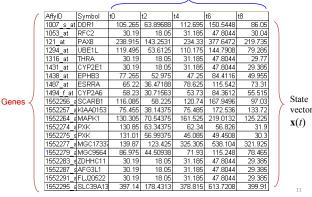
$$b_i : \{0,1\}^{\kappa} \to \{0,1\}$$

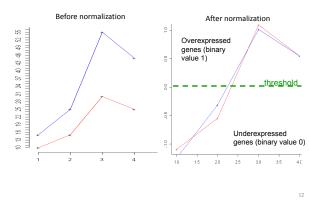
 Dynamics: The state of node v_i at time t is denoted as x_i(t). Then, the state of that node at time t+1 is given by the transition formula:

$$x_i(t+1) = b_i(x_{i1}(t), x_{i2}(t), ..., x_{ik}(t))$$

 where x_{ij} are the states of the nodes connected to v_i. These states can be 0 for underexpressed genes and 1 for overexpressed ones.







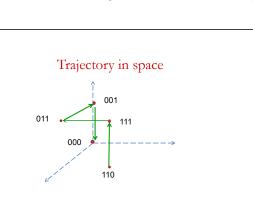
New "data": binarised gene expression data over time

- Overview:
 - $-\mathbf{x}(t)$ is a vector representing binarised expression levels of N genes at time t
 - We want to build a model, i.e. set of Boolean functions for predicting $\mathbf{x}(t+1)$ given the previous series of states $\mathbf{x}(1), \dots, \mathbf{x}(t)$

Gene ID	X(1)	X(2)		X(t)	X(t+1)
g_1	1	0	1	0	?
g ₂	0	1	1	1	?
g _N	0	1	1	0	?

GRN behaves as a stable dynamic system

- Trajectory in time = series of state vector transitions.
- Example: $x_i(t+1) = b_i(x_{i1}(t), x_{i2}(t), ..., x_{ik}(t))$
- If the dynamic system is stable then after certain time it will converge to a "repeating state" no matter what is its initial state.
- · Based on the nature of this "repeating state" we distinguish
 - Fixed point attractor : a single state that repeats itself indefinitely
 - Limit cycle attractor: the system visits the same finite set of states periodically
 - Chaotic or strange attractor: we cannot predict the next state of the system, but the whole set of possible states is confined.

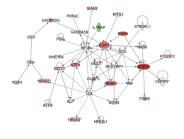




After some time, the dynamics reaches a stable state (in our example state 0,0,0), for which it holds: $x_i(t+1) = x_i(t)$

Use IPA to infer the relationships between genes

- · Once we have set of interactions, then we generate Boolean functions randomly (while being constrained by existing interations and their directions).
- · Then we iterate each GRN to see, which set of Boolean functions conforms with the changes in gene expression over time.

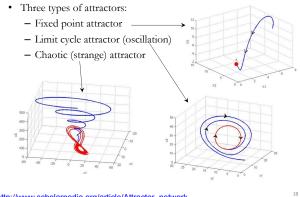


Asymptotic dynamics of Boolean network

	t1	t2	t3	t4	t5	t6
Gene 1	1	1	0	0	0	0
Gene 2	1	1	1	0	0	0
Gene 3	0	1	1	1	0	0

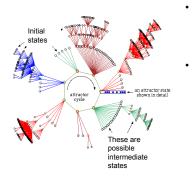
- We have noticed that after time point t5, the state (i.e. vector of binarised gene expression levels) are always 0,0,0.
- Prediction: After some time, the dynamics reaches a stable state (in our example state 0,0,0), for which it holds: $x_{i}(t+1) = x_{i}(t)$

Three types of asymptotic attractors



http://www.scholarpedia.org/article/Attractor_network

Example of state space of Boolean network



- Different initial states undergo different transitions until they reach a stable state.
- Attractor states are stable under small perturbations

 most perturbations
 - cause the network to flow back to the attractor.
 - some genes are more important and changing their activation can cause the system to transit to a different attractor, i.e. cell state.

Summary of Boolean networks

- If the system is stable, then the dynamics of BN converges to an attractor, i.e. stable state(s) resistent to small perturbations.
- Converting real values of gene expression into '0' and '1' can hide important relationships, genes are not only on "OFF" or "ON" state.
- The biggest challenge is to infer Boolean functions, which is (1) often not possible, (2) interactions can change over time. Nevertheless, to infer these functions:
 - Use heuristics from biology to divide genes into small groups
 - Use clustering to divide genes into groups
 - Infer simple Boolean functions 'AND', 'OR', XOR', etc for small groups of genes or clusters of genes.
 - Join them together.
 - Or: generate many random GRNs and after iterating them, choose the best one