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• GRN inference means a reconstruction of GRN based on 
experimental data.

• Modelling the GRN dynamics means simulating the changes 
of gene expression levels over time. 

• For that we need a particular model:
– Boolean Networks
– Weight matrices
– Bayesian Networks
– Differential equations
– other

GRN inference versus modelling GRN dynamics
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GRN inference by IPA (http://www.ingenuity.com/)
• Ingenuity® Pathway Analysis (IPA) software enables GRN inference 

based on the Ingenuity®Knowledge Base containing information on 
genes, proteins, drugs, etc. and molecular relationships.
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GRN as a matrix of  interactions
• Result of  IPA software = matrix of   interactions between genes. 

Genes are chosen e.g. based on selection applied to microarray data. 

Modelling by Boolean network: assumptions

• Each gene is represented by a node in a directed graph, in which 
there is an arrow from one node/gene to another if  and only if  
there is a causal link between the two nodes/genes.

• Each node in the graph can be in one of  two states: on or off.

• "on" corresponds to the gene being expressed above some 
threshold; "off" corresponds to the gene being expressed below 
that threshold (i.e. gene expressions are binarised or discretised).

• Time is viewed as proceeding in discrete steps. At each step, the 
new state of  a node is a Boolean function of  the prior states of  
the nodes with arrows pointing towards it.
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Boolean network model: formal equations

• Boolean network is a graph G(V, B), with a set of nodes (vertices)
V={vi | i = 1,…, n}, together with a set of Boolean functions
B = {bi | i=1,…, n}, such that for k ≤ n

• Dynamics: The state of node vi at time t is denoted as xi(t). Then, 
the state of that node at time t+1 is given by the transition formula:

• where xij are the states of the nodes connected to vi. These states 
can be 0 for underexpressed genes and 1 for overexpressed ones.
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Example of  simple Boolean network

A

X

B

Boolean function OR
A B  X
0  0   0
0  1   1
1  0   1
1  1   1

1 means overexpressed
0 means underxpressed

1) In this simple example, two genes (A and B) regulate gene X. 
2) Their joint influence can be expressed by the logical function OR. 
3) Expression levels of  A and B at time t predict the expression level 
of  X in the next time step (because their regulatory effect takes time)
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• (a) Example of  
interaction network 
of  three genes A,B,C

• (b) Boolean 
functions can be 
inferred from 
binarised gene 
expression data.

• (c ) We need gene 
expression data over 
time to infer and 
verify these Boolean 
relationships.

g1 = g2 + 2 g3

g2 = - g1

g3 = 4 g2

Another example of  Boolean network

Time t Time t +1
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Dynamics of  Boolean network
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• Boolean network is a Graph consisting of G(V, B) 
• V is a set of nodes ( genes ) with states x1 , x2, …, xn
• B is a list of Boolean functions b(x1 , x2, …, xn)

The gene 
expression levels 
change over 
time. These 
changes are 
governed by the 
set of  Boolean 
functions.

Time t

Time t+1

Algorithm for updating the Boolean network

• Assuming we know the Boolean functions for each gene, i.e. we 
know the set B = {bi | i=1,…, n}, we start with initializing the values of  
gene expression in time 0, i.e. 

• Then we proceed by updating the state of  each gene in the next 
time step by applying the corresponding Boolean interactions:

• We iterate until we reach a stable state, i.e. when for each gene i and 
for each time step t, it holds :
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What to do if  we have many gene expression data over time

Genes

Time points
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State 
vector 
x(t)

Normalisation and binarisation of  expression levels

After normalizationBefore normalization
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threshold

Overexpressed 
genes (binary 
value 1)

Underexpressed 
genes (binary value 0)
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New “data”: binarised gene expression data over time

• Overview:
– x(t) is a vector representing binarised expression levels of  N genes 

at time t 
– We want to build a model, i.e. set of  Boolean functions for 

predicting x(t+1) given the previous series of  states x(1),…, x(t)

Gene ID X(1) X(2) … X(t) X(t+1)
g1 1 0 1 0 ?
g2 0 1 1 1 ?

… … … … … …
gN 0 1 1 0 ?
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Use IPA to infer the relationships between genes

• Once we have set of interactions, then we generate Boolean
functions randomly (while being constrained by existing interations
and their directions).

• Then we iterate each GRN to see, which set of Boolean functions
conforms with the changes in gene expression over time.

GRN behaves as a stable dynamic system 

• Trajectory in time = series of  state vector transitions.

• Example:

• If  the dynamic system is stable then after certain time it will converge 
to a “repeating state” no matter what is its initial state. 

• Based on the nature of  this “repeating state” we distinguish
– Fixed point attractor : a single state that repeats itself  indefinitely 
– Limit cycle attractor: the system visits the same finite set of  states 

periodically
– Chaotic or strange attractor: we cannot predict the next state of  the 

system, but the whole set of  possible states is confined. 15
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t1 t2 t3 t4 t5 t6

1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

Gene 1

Gene 2

Gene 3

111 011110 000001
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Asymptotic dynamics of  Boolean network

• We have noticed that after time point t5, the state (i.e. vector of  
binarised gene expression levels) are always 0,0,0.

• Prediction: After some time, the dynamics reaches a stable state (in 
our example state 0,0,0), for which it holds:

Prediction!
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Trajectory in space

• After some time, the dynamics reaches a stable state (in our 
example state 0,0,0), for which it holds: )()1( txtx ii =+
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Three types of asymptotic attractors

• Three types of attractors:
– Fixed point attractor
– Limit cycle attractor (oscillation)
– Chaotic (strange) attractor

http://www.scholarpedia.org/article/Attractor_network
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Example of  state space of  Boolean network
• Different initial states 

undergo different 
transitions until they 
reach a stable state.

• Attractor states are stable 
under small perturbations
– most perturbations 

cause the network to 
flow back to the 
attractor.

– some genes are more 
important and 
changing their 
activation can cause 
the system to transit to 
a different attractor, 
i.e. cell state.

These are 
possible 
intermediate 
states

Initial 
states
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Summary of  Boolean networks
• If  the system is stable, then the dynamics of  BN converges to an 

attractor, i.e. stable state(s) resistent to small perturbations.

• Converting real values of  gene expression into ‘0’ and ‘1’ can hide 
important relationships, genes are not only on “OFF” or “ON” state.

• The biggest challenge is to infer Boolean functions, which is (1) often 
not possible, (2) interactions can change over time. Nevertheless, to 
infer these functions:
– Use heuristics from biology to divide genes into small groups
– Use clustering to divide genes into groups
– Infer simple Boolean functions ‘AND’, ‘OR’, XOR’, etc for small 

groups of  genes or clusters of  genes.
– Join them together.
– Or: generate many random GRNs and after iterating them, choose 

the best one


