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GRN inference and modelling GRN dynamics

* GRN inference means a reconstruction of GRN based on
experimental data.

* Modelling the GRN dynamics means simulating the changes
of gene expression levels over time.

¢ For that we need a particular model:
— Boolean Networks
— Weight matrices
— Differential equations
— Bayesian Networks

— other

GRN inference by IPA

* Ingenuity® Pathway Analysis (IPA) software enables GRN inference
based on their Ingenuity®Knowledge Base containing information on
genes, proteins, chemicals, drugs, and molecular relationships.

GRN as a weight matrix of interactions

W = matrix of
weighted interactions.

Element of matrix
-1< Wi < +1

if w,, <0, then the /
influence is \

. I . TGIF1
inhibitory, otherwise
it’s activatory.

)
NFE2L1

Concrete numbers N
quantify the strength
of the influence.

The goal is to find the values of interaction coefficients in the matrix
W so that we can predict the next state (expressions of genes) 4

Interaction matrix W
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Example: GRN for gliomas [Shmulevich et al]

Update rule for gene expressions once we know W

* Regulatory interactions between genes ate modelled with a weight
matrix W such that the expression level (concentration of mRNA) of
gene i at time #+1 is calculated as:

m(t+1)= f(iwﬁm/(t)]

- mj(t) = normalized expression level of gene j at time ¢
— W;; = regulatory influence of gene j on gene 7 (assumed to be
constantl), either activation (w;; < 0) or inhibition (w; > 0)

— fis a nonlinear function, e.g. a sigmoid:




Update rule with the bias

* The f parameter represents the basal expression level of the
gene in the absence of any regulative input (its “bias”)

* Thus the transition equation (update rule) now reads:

m(t+1)=f i(w,jmj(t)uz)

=
* Where fis a sigmoid function: 12) e max
fe=
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Fitness function: goodness of fit to data

* We want to minimise the total error E, which is the sum of squared
differences between measured and predicted values of gene expression:

E = ZZ (mireal(t) _ mipredicted (t))z
Vi Vt

r \ 91 g2 93 g4 g5 96

t1 1.7 1.5 1.2 -03 1.4 1.6 Expression of six
ts | 1.8 07 13 08 -0.1 1.7 genes measured
ty | -1.8 04 17 1.8 06 -04 at 5 different time
ty | -1.7 -14 09 05 -1.8 -02 steps. Thus, 7 =
ts | 0.0 1.9 -19 1.7 16 -05 1...6and¢=1...5

Finding W by means of a genetic algorithm

e Start with a large “population” of randomly generated solutions
to a problem, i.e. many random interaction matrices W

¢ Repeatedly do the following:

- Evaluate each of the attempted solutions for the goodness of
match with the temporal expression of each gene

- Use the best solutions to generate a new population through
crossover and mutation.

¢ Quit when you have a satisfactory solution (or you run out of
time).

VEGF; VPE

Interaction matrix W that
fits the data is found
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Example: GRN for gliomas [Shmulevich et al]

VEGE; VPE
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Cancer tissues need nutrieﬁ

Gliomas are highly angiogenic.
Expression of VEGF is often
elevated.

VEGF protein is secreted outside the
cells and binds to its receptor on the 044
dothelial cells to pr te their
growth. =
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Example: GRN for gliomas [Shmulevich et al]

Member of fibroblast
growth factor family

Tyrosine kinase
receptor
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* The protein products of all four genes are part

of signal tr [ ys that i
surface tyrosine kinase receptors.
* Theser ptors, when i d, recruit a

of p p ins to relay the signal to @5
downstream molecules

* GRB2 is one of the most crucial adaptors that
< have been identified.

* GRB2 is also a target for cancer intervention
because of its link to multiple growth factor
signal transduction pathways.

NKEFB; TSA; TOPX1

Follicle-stimulating
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Interpretation of results

¢ We want to make sense of the selected genes and their interactions,
ideally at one integrated place.
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Gene Ontology (GO)

* Gene Ontology (GO) provides a controlled vocabulary to
describe gene and gene product attributes in any organism.

* Recent ontology statistics: As of ontology version 1.1423,
dated 13:09:2010

— 32560 terms, 99.3% defined;
— 19489 biological processes
— 2759 cellular components

— 8867 molecular functions

— Etc. (links to dozens of microarray processing tools)
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* Ontology in Computer Science: Formal treatment of the concepts
and their relationships in a given domain.

* Applications
— Representing and storing data (e.g., database schema)
— Knowledge sharing within and between domains
— Search and retrieval

— Intelligent organization of data resources
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KEGG: Kyoto Encyclopedia of Genes and Genomes
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Weight matrices GRN: evaluation
* Delays of interactions between genes are not taken into account;

¢ The dynamics of GRN is discrete & synchronous. In reality this update
is asynchronous and continuous process;

¢ Interaction coefficients are some abstract numbers behind which we

should see chains of events leading from expression of one gene to other
genes in the network, thus it’s difficult to interpret them.

* Therefore it may be better to replace w;; with probabilities — this is
leading to other model(s) — like the Bayesian networks or probabilistic
Boolean networks.




