

• When a question asks for a numerical answer a working of how that answer was obtained is required.

Hidden Markov models

- Task: given these sequences how would you infer the underlying HMM?
- What are HMM good for?
- If you have several HMMs how would you decide which one is the best model for your sequence?

atagcgattcgactga cagcccagaaccctcc cggtataccttacatc tgcattcaatagctta tatcctttccactcac

ctataaacgttacatc

ctccaaatcctttaca ggtcatcctttatcct

Which HMM is the best for the query sequence?

 The ideal HMM is a *minimal* model against which all the query sequences will have the highest scores compared to any other HMMs.

Example phylogeny question

• Construct the rooted phylogenetic tree for the 3 species below. Calculate its Fitch cost and infer the characteristics of HTUs based on these characteristics: excessive body hair (present, absent); brain size (small, medium, large) and picking the nose (present, absent).

Score =

product of

concrete

emission

probabilities

Homo Sapiens Sapiens

Australopithecus Afarensis

Homo Erectus

Evolutionary time

Inference/training of HMM based on alignment

1)	A	С	A	A	т	G
2)	т	С	A	A	т	С
3)	А	С	A	A	G	С
4)	А	G	A	A	т	С
5)	A	С	С	A	т	С

First we perform global alignment of *n* sequences, we assume there are as many states as letters

Observation probability of each letter at a given position is derived from the frequency. If these frequencies are the same at several positions, then we can collapse two or more states into one.

Transition probability: in our simple case $P(X_t | X_{t-1}) = 1.0$

14

Examples of questions for phylogeny

- Example questions:
 - What kind of tree do we use to represent a phylogeny? Name all the parts and how they are related.
 - Why might this model fail to represent reality?
 - Parsimony approaches are based on minimising some criterion. What are those criteria?
 - Can we be sure what criterion Nature uses? Can we be sure that Nature generates optimal trees? If so, how; if not, why would we want them?
 - What assumption is the clustering method based on?
 - Put in contrast the parsimony and clustering method in phylogenetic tree construction.

Examples of questions for clustering

- · We introduced two methods of clustering:
 - Describe three ways to define a distance between two clusters, given objects in those clusters and the object/object distance matrix. Why defining a distance measure is the key for clustering?
 - Explain how bottom-up clustering works. Illustrate your explanation by showing what happens to any example data
 - Explain how the K-means clustering works. Illustrate your explanation by showing what happens to any example data

A	в	С	D
0	4	3	6
4	0	1	2
3	1	0	5
6	2	5	0
	0 4 3	0 4 4 0 3 1	 A B C 0 4 3 4 0 1 3 1 0 6 2 5

18

16

Gene regulatory network: Boolean network

	t1	t2	t3	t4	t5	t6
Gene A	1	1	0	0	0	0
Gene B	1	1	1	0	0	0
Gene C	0	1	1	1	0	0

- Find the set of Boolean functions describing the state of genes A, B and C in time t+1 based on states of A, B, C in time t.
- These Boolean functions have to hold for every transition, i.e.:

Preparation for the final exam worth 60%

- I will not ask anything that was not covered in the lectures or
- http://www.otago.ac.nz/library /exams

x + 2 = 52=3 Ralia

20

"Just a darn minute! — Yesterday you said that X equals **two**!"

Which years/questions you should look at:

regulatory network matrix W is given, how would you calculate all

- 2010-2013: all questions (note: the paper was not offered in 2014).
- 2009: Questions 1, 2, 3, 4, 5 (except 5a & 5b), 6 (except 6b), 7.
- 2008: Questions 1, 2 (except 2e), 3, 4, 5 (except 5c), 6 (except 6a), 7, 9.
- 2007: Questions 1 (except c), 2 (except 2b), 7 (except 7a), 8, 9 (except 9b), 10.
- 2006: Questions 6, 7, and 8 (except 8a), 9a.
- No questions from 2005 and 2004.

gene expressions at time t+1?

Strategy

- You will notice there are overlaps between the exam questions.
- Identify those overlaps and focus on the common topics, which occur repeatedly, and study for these topics.
- Create small study groups, communicate with each other, exchange answers, email me or email me to arrange a meeting in person.
- FAREWELL & GOOD LUCK !

