COSC 348: Computing for Bioinformatics

Lecture 26:
Revision and topics for the final exam

Lubica Benuskova, Ph.D.
http://www.cs.otago.ac.nz/cosc348/

What will be examined ??????????

- There will be no multi-choice questions.

Bioinformatics computing we've learned about (cont'd)

- Construction of phylogenetic trees (5 lectures +3 labs)
- Construction of phylogenetic trees based on parsimony (i.e. tree cost)
- Computing the tree cost (Fitch and Sankoff method)
- algorithm for building a tree structure (adding the leaves and HTUs)
- Greedy algorithm for building the optimal tree and its variants
- optimisation of the cost (genetic algorithm, simulated annealing)
- Construction of phylogenetic trees based on clustering
- Principle of agglomerative, bottom-up, clustering method

Structure of the final exam

- Time allowed: 3 hours
- No supplementary material is provided for the examination:
- I.e., no reference books, notes, or other written/spoken material allowed.
- Bring the CALCULATOR. No restriction on the model of calculator, but no communication capability. They can be inspected.
- There are 5 questions, 12 marks each. Answer ALL 5 questions.
- Each question has a number of sub-questions (individually marked)
- Boolean networks (principles, assumptions, properties)
- Weight matrices (principles, assumptions, properties)
- Ordinary differential equations (principles, assumptions, properties)
- When a question asks for a numerical answer a working of how that answer was obtained is required.

Examples of questions from basic notions

- What is DNA? What is RNA? What constitutes a gene ?
- How are DNA and RNA related? What is a genetic code?
- What is coding and non-coding DNA for?
- What's transcription? What's translation? What's splicing?
- What is gene expression ? What is a transcription factor?
- How is the gene expression regulated?

Example questions: exact string matching

- A question may concern any of the 5 algorithms used to find occurrences of a pattern, pat, in a text, txt, which we covered in lecture 4:
- Describe how the algorithm works on an example of txt and pat.
- What is its worst-case complexity in terms of the length of pat and the length of txt?
- If a text contains 1000 characters, and a pattern 10 characters, what is the minimum number of character comparisons which might ensure that the pattern does not occur in the text?
- Which exact string algorithm come closest to achieving this bound ?
- Why (basically, describe the algorithm)?

Example questions: alignments

- What is an alignment score?
- Why do we need it?
- How do we (they) construct it?

	C	T	A	G
C	+2	+1	-1	-1
T	+1	+2	-1	-1
A	-1	-1	+2	+1
G	-1	-1	+1	+2

- Using the brute force method and a given substitution matrix (scoring scheme) with the constant gap penalty $g=-10$, find the best global pair-wise alignment between the sequences ATGGCG and ATGAG.

Example questions: alignments

- Describe the Needlemann-Wunsch algorithm for computing optimal global alignments and illustrate it with the example of aligning CATT and CTG if matches score 8, mismatches -4 , and insertions or deletions -10 .

S		C	A	T	T
	0	-10	-20	-30	-40
C	-10	$?$			
T	-20				
G	-30				

T		C	A	T	T
	done	left	left	left	left
C	up	$?$			
T	up				
G	up				

Scoring strings with a Profile

Given a profile matrix $\mathbf{P}=$

A	0.5	0.8	0.3	0
C	0.1	0	0.5	0.6
T	0.1	0.2	0	0
G	0.3	0	0.2	0.4

Note: in calculations of scores replace zeros with 0.1
Find the P-most probable 4-mer in this sequence :
CTATAAACCTT

Hidden Markov models

- Task: given these sequences how would you infer the underlying HMM?
- What are HMM good for?
- If you have several HMMs how would you decide which one is the best model for your sequence?

ctataaacgttacatc

 atagcgattcgactga cagcccagaaccctcc cggtataccttacatc tgcattcaatagctta tatcctttccactcac ctccaaatcctttaca ggtcatcctttatcctInference/training of HMM based on alignment

Observation probability of each letter at a given position is derived from the frequency. If these frequencies are the same at several positions, then we can collapse two or more states into one.

Transition probability: in our simple case $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)=1.0$

Which HMM is the best for the query sequence?

- The ideal HMM is a minimal model against which all the query sequences will have the highest scores compared to any other HMMs.

Score $=$ product of concrete emission probabilities
$\begin{array}{lllllllllll}0.5 & 0.8 & 0.8 & 0.8 & 0.1 & 0.8 & 0.8 & (0.1 & 0.1\end{array}$

Examples of questions for phylogeny

- Example questions:
- What kind of tree do we use to represent a phylogeny? Name all the parts and how they are related.
- Why might this model fail to represent reality?
- Parsimony approaches are based on minimising some criterion. What are those criteria?
- Can we be sure what criterion Nature uses? Can we be sure that Nature generates optimal trees? If so, how; if not, why would we want them?
- What assumption is the clustering method based on?
- Put in contrast the parsimony and clustering method in phylogenetic tree construction.

Example phylogeny question

- Construct the rooted phylogenetic tree for the 3 species below. Calculate its Fitch cost and infer the characteristics of HTUs based on these characteristics: excessive body hair (present, absent); brain size (small, medium, large) and picking the nose (present, absent).

Australopithecus Afarensis

Homo Erectus

Homo Sapiens Sapiens

Examples of questions for clustering

- We introduced two methods of clustering:
- Describe three ways to define a distance between two clusters, given objects in those clusters and the object/object distance matrix. Why defining a distance measure is the key for clustering?
- Explain how bottom-up clustering works. Illustrate your explanation by showing what happens to any example data
- Explain how the K-means clustering works. Illustrate your explanation by showing what happens to any example data
$\begin{array}{lllll} & \text { A } & \text { B } & \text { C } & \text { D } \\ \text { A } & 0 & 4 & 3 & 6 \\ \text { B } & 4 & 0 & 1 & 2 \\ \text { C } & 3 & 1 & 0 & 5 \\ \text { D } & 6 & 2 & 5 & 0\end{array}$

Weight matrix of gene interactions

- Write down the equation for GRN modelled by the weight matrix. What does the weight matrix \mathbf{W} represent?
- Regulatory interactions between genes are modeled with a weight matrix W such that

$$
\mathrm{g}_{\mathrm{i}}(\mathrm{t}+1)=\sigma\left[\sum_{\mathrm{j}} \mathrm{w}_{\mathrm{ij}} \mathrm{~g}_{\mathrm{j}}(\mathrm{t})\right]
$$

$-\mathrm{w}_{\mathrm{ij}}=$ Regulatory influence of gene j on gene i is assumed to be constant
$-g_{j}(t)=$ Expression level of gene j at time $t(m R N A ~ l e v e l)$
$-\sigma$ is a nonlinear saturation function, usually sigmoid

- If all the gene expression levels are given for time t and the gene regulatory network matrix \mathbf{W} is given, how would you calculate all gene expressions at time $t+1$?

Which years/questions you should look at:

- 2010-2013: all questions (note: the paper was not offered in 2014).
- 2009: Questions 1, 2, 3, 4, 5 (except 5a \& 5b), 6 (except 6b), 7.
- 2008: Questions 1, 2 (except 2e), 3, 4, 5 (except 5c), 6 (except 6a), 7, 9.
- 2007: Questions 1 (except c), 2 (except 2b), 7 (except 7a), 8, 9 (except 9b), 10.
- 2006: Questions 6, 7, and 8 (except 8a), 9a.
- No questions from 2005 and 2004.

Gene regulatory network: Boolean network

	t 1	t 2	t 3	t 4	t 5	t 6
Gene A	1	1	0	0	0	0
Gene B	1	1	1	0	0	0
Gene C	0	1	1	1	0	0

- Find the set of Boolean functions describing the state of genes A, B and C in time $t+1$ based on states of A, B, C in time t.
- These Boolean functions have to hold for every transition, i.e.:
$-\mathrm{C}(\mathrm{t}+1)=\mathrm{B}(\mathrm{t})$
$-\mathrm{B}(\mathrm{t}+1)=\mathrm{A}(\mathrm{t})$
$-\mathrm{A}(\mathrm{t}+1)=\mathrm{B}(\mathrm{t}) \& \neg \mathrm{C}(\mathrm{t})$

Preparation for the final exam worth 60%

- Lecture notes and lab notes.
- I will not ask anything that was not covered in the lectures or labs.
- An excellent source are the past exams.
- All past exams from 2004 to 2013 are available at: http://www.otago.ac.nz/library Lexams

"Just a darn minute! - Yesterday you said that X equals two!"

Strategy

- You will notice there are overlaps between the exam questions.
- Identify those overlaps and focus on the common topics, which occur repeatedly, and study for these topics.
- Create small study groups, communicate with each other, exchange answers, email me or
 email me to arrange a meeting in person.
- FAREWELL \& GOOD LUCK

