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Phylogeny based on cost: parsimony approach
• Let’s have an imaginary species called Caminalcules. We want to 

derive a phylogenetic tree for its subspecies (labelled by numbers). 
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Definition: character

• Let us construct phylogeny based on characters.

• A character is a measurable property of a taxonomic unit. 

• Characters are chosen because we believe they are informative. We 
can be wrong about that.

• A character value or character state is a value that the character 
may have. 

• Based on the values, a character may be
– Boolean or binary
– Discrete
– Continuous 
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Characters: example

• Head_junction: simple, complex 
• Horn: absent, present, horn flattened, horn pointed 
• Head_length: 9--10.9, 10.9--12.8, 12.8--14.7, 20.4--22.3, etc. 
• Anterior_of_head: concave, flat, convex 
• Anterior_projections: absent, present 
• Eyes: absent, present 
• Eye_stalks: absent present 
• Length_of_stalks: 3--4.5, 4.5--5.9, 6--7.5, 10.5--12, etc.  
• Top_of_head: depressed, flat, crested, headcrest, single, lobate
• etc. More characters will be used in the lab.
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Discrete characters
• Binary: there are just two possible values, which we may represent by 0 and 

1. The only question you can ask is "are these the same or different?" 

• Nominal: there are two or more possible values, which we may represent by 
integers: 0 ... v-1. There is no ordering; we could mix up the numbers any 
way we like and it would make no difference. The only question we can ask 
is "are these values the same or different?" There is no notion of some 
values being closer than other values. 
– We might choose to treat nucleotides (A, C, G, T) as nominal 

values. However, when we do that, we loose sight of the fact that 
they fall into two groups: the pyrimidines (C, T) and the purines 
(A, G). 

– In the same way, we could treat amino acids as nominal values, 
but we'd lose some similarity detail. 
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Discrete characters contd.

• Ordinal: there are several possible values which are in a definite 
order. We can represent the values by 0 ... v-1, or by any other series 
of numbers we like, but we cannot scramble the order because the 
order matters. If a character is nominal, a value x may be closer to y
than to z, but we cannot say how much closer. 
– For instance, we have a distinct number of possible colours, 

where these values have an ordered relationship, e.g., light brown  
<  medium brown  <  dark brown  <  black.

• Counts: the values are the whole number counts. For example, we 
might take the number of toes on the forelimb: 0 for a snake, 1 for a 
horse, 2 for a cow, 3 for a three-toed sloth, 4 for a frog, 5 for a 
mouse. The values are fixed. If a character is a count, we can make 
quite precise quantitative comparisons. 
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Continuous characters

• Physical measurements such as length, weight, and so on must 
always be strictly positive. They are totally ordered. 
– If x lies between y and z, we cannot determine whether x is closer 

to y or z without deciding whether to use raw numbers 
(difference, ratio, etc), square roots, or logarithms, or some other 
transformation. 

– Differences between measurements can be zero. 

• Continuous characters are often “binned”. That is, the range is 
divided into blocks and the block number recorded as an ordinal 
value. For example, in the Caminalcule characters we find:
– 13. If eyes on stalks, length of stalk (excluding eye) in 

mm, recorded as (0) 3-4.5mm; (1) 4.5-5.9mm; (2) 6-7.5mm; 
(3) 10.5-12mm; (4) 13.5-15mm; (5) 16.5-18mm.

• This converts a continuous measurement to an ordinal value. 8

Calculating the cost
• Let us ask the question "how hard is 

it to get from state X to state Y?". 

• We will compute the cost of 
change for a single character in a 
given tree, working from the leaves 
along the branches towards the root. 

• This can easily be applied to any 
number of characters, either 
– by making a separate pass over 

the tree for each character and 
adding up the results, 

– or by making a single pass over 
the tree adding up for all char’s 
as we go.

X

Y
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The Fitch algorithm for cost calculation

• The cost of a node is the smallest 
number of changes for the subtree 
rooted at that node. 

• This algorithm is suitable for binary 
and nominal characters, because it 
only asks "are these two values the 
same or different“? Any difference 
counts as a cost of 1. 

• Author: Walter M. Fitch, Prof. of 
molecular evolution, Irvine, USA.

Y

X
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The Fitch algorithm

• Lets’ assume we have only one binary character [0, 1].

• The Fitch of a leaf with value x is (0, x) 
• The Fitch of an internal node with children a, b is

– let (cost_a, value_a) be the Fitch of child a
– let (cost_b, value_b) be the Fitch of child b

• if value_a intersect value_b is non-empty, return
(cost_a + cost_b,  value_a intersect value_b) 

• if value_a intersect value_b is empty, return
(cost_a + cost_b + 1, value_a union value_b) 

a b

Note on intersection and union: let one set be {2,3,5} and another 
set be {1,2,4}, then the intersection would be {2} and the union 
would be {1,2,3,4,6}.
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The Fitch function: example

• Lets’ assume we have only one binary character [0, 1].

1. The Fitch of a leaf a is (0, [0 or 1]).
2. The Fitch of a leaf b is (0, [0 or 1]).

3. The Fitch of an internal ancestor node with children a, b is 

If value_a = value_b = 0, the Fitch of their ancestor = (0, 0). 

If value_a = value_b = 1, the Fitch of their ancestor = (0, 1). 

If value_a = 0, value_b = 1, the Fitch of the ancestor = (1, [0 or 1]).

If value_a = 1, value_b = 0, the Fitch of the ancestor = (1, [0 or 1]).

a b
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The Fitch cost of a tree
• Computes the cost and value for 

each node starting from the bottom 
of the tree for each branch. 

• The final cost of the whole tree is 
the cost component at the root. 

• Generalisation to nominal values, 
– for instance Anterior of head: 

concave (0), flat (1), convex (2). 
– then possible unions of values 

for the ancestor are: flat or 
convex (1 or 2), concave or flat 
(0 or 1), or concave or convex 
(0 or 2). 

Y

X
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• It can easily be applied to any number of characters. Possible values for 
characters in DNA are {A, T, C, G}, for proteins there are 20 different 
AA, plus the gap. 

• We have a set of n globally aligned sequences and the task is to apply 
the Fitch algorithm. If the letter is the same, cost = 0, if the letter is 
different, cost = 1. We treat each letter as one character.

• Each node in the tree is the whole sequence ACGT…

• We’ll deal with the question how to order the nodes later.

Fitch cost for biomolecules

A, [C or T], G, [C or T],…

A, C, G, T,… A, T, G, C,…

This is DNA from 
an imaginary 
ancestor
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The Fitch algorithm: evaluation

• In reporting the run-time of these algorithms, I use the following 
variables: 
– n = the number of OTUs 
– k = the number of characters measured 
– v = the number of values for a character 

• The cost of the node cost calculation is O(v). We visit each node 
exactly once, so the cost for a single character is O(nv). Since we 
have to do this for each character and combine the results, the 
total cost is O(nkv). 

• In short, the Fitch algorithm is simple and fast, but crude. 
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The Sankoff algorithm for cost calculation
• The cost is based on an 

evolutionary change scoring 
scheme (magnitude of change 
matters). 

• We proceed from the leaves to the 
root. The final cost is the minimal
cost of the root.

• This algorithm is suitable for any 
characters.

• David Sankoff, professor at 
Montréal University, Canada
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• Let Cij be the evolutionary cost of going from state i in an ancestor to 
state j in an immediate descendant.  

• Let's take a tree-structured character as an example:
– ( Horn is absent (0) 
– , ( Horn is flattened (1) 
– , Horn is pointed (2) 
– ) 
– ) 

• Common sense: it is easier to change the shape of a horn than to 
acquire or lose one. So we might have a change cost matrix like this: 

• If our characters are letters in biosequences, we might use the same 
cost matrices that we use in doing alignments  (PAM, BLOSUM, etc). 

The Sankoff evolutionary cost

j=0 j=1 j=2
i =0 0 3 3
i =1 3 0 1
i =2 3 1 0
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The Sankoff algorithm for cost calculation

• Let wi is the least cost of the subtree rooted at the node if this 
node had the value i.

• Sankoff of a leaf with value x is wx = 0 (or infinity). 
• Sankoff of an internal node with children a, b is 

– let (wa) be Sankoff of child a 
– let (wb) be Sankoff of child b

– Return:

Cost of changing 
value j to value i

( ) ( )
kj bikkaijji wCwCw +++= minmin

Calculated 
recursively for ALL 
concrete values i, j
and k, respectively

Cost of changing 
value k to value i
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• Let's take a tree-structured character as an example: 
– ( Horn is absent (0) 
– , ( Horn is flattened (1) 
– , Horn is pointed (2) 
– ) 
– ) 

The Sankoff cost: example

j=0 j=1 j=2
i =0 0 3 3
i =1 3 0 1
i =2 3 1 0

( ) ( )
kj bikkaijji wCwCw +++= minmin

?

Flat 
horn

Pointed 
horn
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Minimum 
cost = 1
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Not observed / not observable values
• The problem that plagues us in this data set is the "not 

observed/not observable" the "x" values in our Caminalcules
example.

• One way to handle them is to eliminate them. You can remove all 
characters for the Caminalcules that have only “x” values for all 
subspecies. However, there doesn't seem to be any way to get rid of 
all of them.

• Another way is to treat changes involving an "x" as costing nothing, 
unless there's an implied change between two non-"x" values. 

• By far the simplest way is this one: just treat "x" as another 
value. Treat change to or from "x" just like any other change. 
Such a change is generally caused by a change in the 
character, so we can't be too far out.
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Multiple characters

• Compute tree cost for each character independently, and add them up. 

• We do not have to assume that the characters are equally important: 
we could assign a possibly different weight to each character and 
calculate a weighted sum.

• There is a big approximation here, which is that the characters are 
independent, which may not be the case.
– We can solve this by merging the characters: e.g. physical 

measurements are often not independent: body size and body mass 
are related. 
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• If the phylogenetic tree contained DNA sequences in each node
then we can treat each letter {A, T, C, G} as a one character.

• For DNA we have the following substitution matrix: ‘+2’ as a
reward for match, ‘+1’ for substitution of pyrimidine for
pyrimidine and purine for purine, respectively, and ‘−1‘ as the
penalty for mismatch (+some gap penalty):

• Thus for each node we can calculate the alignment score and
by taking its inverse, we get the value of the evolutionary cost
Cij of going from DNA sequence i to DNA sequence j
– (the more similar the sequences are the smaller evolutionary change

there was).
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Evolutionary cost for biomolecules
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• For proteins we’d use protein substitution matrices (PAM, BLOSUM) 

• The scoring scheme consists of character substitution scores (i.e. score
for each possible character replacement) plus penalties for gaps
(constant, linear, additive).

• The alignment score is the sum of substitution scores and gap
penalties. The alignment score thus evaluates evolutionary similarity
of sequences.

• The cost of evolutionary change is the inverse of the alignment score.
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Evolutionary cost = inverse of  the alignment score
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The Sankoff algorithm: inifinity

• Interestingly, the Sankoff algorithm can handle the cases where 
we are not exactly sure what the character value for some leaf is, 
only that it belongs to some subset. 

• We assign the cost 0 to each possible value and infinity to the 
impossible values. 

• "Infinity" does not have to be an IEEE infinity value and it does 
not need any special magic to handle it. If n is the number of 
OTUs, then the tree can be at most n levels deep, and the biggest 
possible increment is twice the maximum entry in the C matrix, 
so 2nmax(Cmax)+1 will suffice as "infinity", and this is finite. 
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The Sankoff algorithm: evaluation
• In reporting the run-time, I use the following variables: 

– n = the number of OTUs  
– k = the number of characters measured 
– v = the number of values for a character 

• The algorithmic cost here is higher. It is O(n.v2) for a single 
character, so O(n.k.v2) for all the k characters. In practice this 
algorithm is O(v2) times slower than the Fitch algorithm. We put up 
with this because it can give us better results.

• The Sankoff algorithm for cost calculation is smarter, but you have to 
tell it more, and it costs more than the Fitch algorithm.


