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Phylogeny

• Phylogenetic tree is a tree with two 
kinds of nodes: 
– A leaf has a parent and no 

children. It stands for an 
observed taxonomic unit 
(OTU). 

– An internal node has a parent 
and two children. It stands for 
a hypothetical taxonomic unit 
(HTU), i.e. an imaginary 
ancestor. 

– The two children are not 
ordered: (A,B) and (B,A) are 
the same split.

A B
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Building a tree

• In this lecture we’ll look at how 
many trees there are for given n, 
how to build a tree from scratch 
and start looking at how to find 
the tree with the minimal cost .

• The tree construction problem is 
not only of interest in 
bioinformatics. 

• Suppose, for example, that you 
want to optimise database queries. 
There are as many ways to join (or 
unite, or intersect) n tables as there 
are phylogenies for n species.  4

• Let’s look at how we can infer a phylogenetic tree using the 
parsimony idea. Having defined the cost f(x) of a tree x, we now 
have to find the tree or trees with the least cost v. 

• The simplest possible algorithm is exhaustive enumeration:

• This is a very practical algorithm, as long as X (the set of all 
phylogenetic trees) is small and as long as we are able to construct 
them all. 

Exhaustive enumeration

To find tree x in set X for which cost f(x) is least: 
1. best_x = last_tree, best_f_x := cost_of_last_tree 
2. for each x in X

a. cost := f(x)
b. if cost < best_f_x then 

I. best_x = x, best_f_x := cost
II. Else go to step 1
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Counting the trees: rooted trees

• Thus, we are interested in how 
many trees there are for given n. 

• A rooted phylogeny means that we 
not only know how much change
there has been, but also which way
it has gone. 

• A phylogenetic tree with n leaves 
will have n−1 internal nodes and
2n−2 edges.
– Example: let n = 5, then we have 

4 internal nodes and 8 edges.
– An exception is n = 1.
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Counting trees: towards Newick format

• Let’s start by making a tree containing 
leaf 1. There is only one such tree, and it 
has one internal node and one edge. 

• Let us have two leafs 1 and 2, then we 
have one internal node and since two 
children are not ordered, we have only 
one tree: (1, 2).

• Here ‘(’ stands for the left edge, ‘)’ 
stands for the right edge, and ‘,’ stands 
for an imaginary ancestor (internal 
node).

1

1 2
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Counting trees: Newick format
• Let’s have 3 leaves: 1, 2 and 3. We have three different trees:

– Convention: child, which has the smallest left subtree goes 
first and order of children does not matter.

1 2

3

3

1

2 1 3

2

((1, 2), 3) (1, (2, 3)) ((1, 3), 2)
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1. One rooted tree with 1 leaf: 1 
2. One rooted tree with 2 leaves: (1,2) 
3. Three rooted trees with 3 leaves: ((1,2),3) ((1,3),2) (1,(2,3)) 
4. Fifteen rooted trees with 4 leaves:

(((1,2),3),4) 
(((1,2),4),3) 
(((1,3),2),4) 
(((1,3),4),2) 
(((1,4),2),3) 
(((1,4),3),2) 
((1,(2,3)),4) 
((1,(2,4)),3) 
((1,(3,4)),2) 
((1,2),(3,4)) 
((1,3),(2,4)) 
((1,4),(2,3)) 
(1,((2,3),4)) 
(1,((2,4),3)) 
(1,(2,(3,4))) 

Newick format: unique representation of a tree

Note: The order of  the children of  a 
node is not significant, so there may be 
many strings that represent the same 
tree. One way to pick a unique string is 
to order the children A B of  a node so 
that the child, which has the smallest 
left subtree should go first. Having 
unique representations makes it easier 
to see if  we all find the same tree.
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Tree of Caminalcules in Newick format
• (((((((1,17),24),(16,27)),((((2,(3,22)),12),4),((5,18),23))), 

(((19,26),29),20)),(((((7,15),13),8),(14,(25,28))),30)), (((6,10),(11,21)),9))  
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Number of trees grows exponentially

• Here is the table how fast the # 
of trees grows with n

• It can be shown the number 
of trees with n leaves is the 
recursive product of
1×3×5×...×(2n−3). 

• This calculation holds for 
rooted trees.

• A rooted phylogeny means 
that we not only know how 
much change there has been, 
but which way it has gone 
(from a common ancestor). 

n # of trees

1
2
3
4
5
6
7
8
.
.
.

20

1
1
3

15
105
945

10,395
135,135

.

.

.
8200794532637891559375 
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Unrooted trees
• In the Agatha Christie detective story "The Man in the Brown Suit", 

the heroine's father was an eccentric anthropologist whose theory was 
that humans were not descended from chimpanzees, no, chimpanzees 
were degenerate humans! 

• If the only OTUs you have are chimpanzees and humans (i.e no other 
data like fossils), that's not as crazy as it sounds. All you have is a 
difference, not a direction. 

• Many phylogeny inference algorithms construct unrooted trees.
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Unrooted trees
• Thus, in the case of unrooted phylogenies, there 

are two kinds of nodes: leaves are on the 
"outside" of the tree and internal nodes are on 
the "inside" of the tree.

• Given an unrooted tree, we can construct a 
rooted tree by choosing one of its leaves, 
ripping the leaf off, and making that edge the 
root edge. 

• Conversely, given a rooted tree, we can make an 
unrooted tree by pasting a new leaf onto the 
root edge. 

• So the number of unrooted trees with n leaves is 
the same as the number of rooted trees with n−
1 leaves. 
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Rooted tree: an outgroup

• As computer scientists, we prefer to work with rooted trees. The 
simplest way to ensure that we can do this is to use an outgroup. 

• An outgroup is an OTU, which is similar enough to the OTUs we are 
really interested in, to make comparisons possible, but different 
enough that it's obviously outside the family. 

• Finding an outgroup requires biological knowledge and judgement. 
– For example, if we wanted to find a phylogeny for the apes 

(people, chimps, bonobos, gorillas, orang-utans) we might choose 
Rhesus monkeys. 

• Computationally, we add the outgroup to the tree last, forcing it to 
join up at the root. 
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Building a tree

• It is useful to have a dummy 
"header" node at the very top of 
the tree, which counts as the 
parent of the root node – each 
node now has a parent. 

• When we insert the OTU, we do 
so by splitting one of the existing 
edges and inserting an internal 
node with the new leaf as one of 
its children and the old subtree as 
its other child. 

• Splitting an edge and splitting just 
above a subtree amount to the 
same thing; there are 2n-1 
subtrees.
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Algorithm for building a tree

1. Pick an existing node c (for 
"child"). 

2. Let node p be the parent of c. 
3. Let i be a new internal node. 
4. Let x be a new leaf (eXternal 

node) holding the OTU that is 
to be added to the tree.

5. Make i be the x's parent and x
be i's right child.

6. Make i be the c's parent and c
be i's left child. 

7. Make i be p's left child if c was
p's left child or p's right child if
c was p's right child. 

8. Make p be i's parent.
9. Swap x for c.

c
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i
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i
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Algorithm for building a tree

1. Pick an existing subtree c
(for "child"). 

2. Let node p be the parent of 
c. 

3. Let i be a new internal 
node. 

4. Let x be a new leaf holding 
the OTU that is to be added 
to the tree. 

5. Make i be x's parent and x
be i's right child. 

6. Make i be c's parent and x
be i's left child. 

7. Make i be p's left child if c
was p's left child or p's right 
child if c was p's right child. 

8. Make p be i's parent. 
9. Swap x for c.
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Undoing changes

• To undo the most recent  
addition, you start from x.

• From that, p is i's parent, and c
is i's left child. 

• As you are about to discard i, 
you only have to worry about 
restoring the link between p
and c. 
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How to build the best tree?

• We know how to calculate cost.

• We know how to build a tree.

• We know the problem is NP complete. There is no efficient 
way to locate a solution. 

• How do we know at least in principle, in which order to add 
OTUs so that the tree cost would be minimal?

• To find the “best” tree we have to use one of the 
optimisation algorithms: greedy algorithm with random 
restarts, hill-climbing, simulated annealing, genetic algorithm. 


