
1

COSC 348:
Computing for Bioinformatics

Lecture 13:
Building a (phylogenetic) tree

Lubica Benuskova
Prepared according to the notes of Dr. Richard O’Keefe

http://www.cs.otago.ac.nz/cosc348/
2

Phylogeny

• Phylogenetic tree is a tree with two
kinds of nodes:
– A leaf has a parent and no

children. It stands for an
observed taxonomic unit
(OTU).

– An internal node has a parent
and two children. It stands for
a hypothetical taxonomic unit
(HTU), i.e. an imaginary
ancestor.

– The two children are not
ordered: (A,B) and (B,A) are
the same split.

A B

3

Building a tree

• In this lecture we’ll look at how
many trees there are for given n,
how to build a tree from scratch
and start looking at how to find
the tree with the minimal cost .

• The tree construction problem is
not only of interest in
bioinformatics.

• Suppose, for example, that you
want to optimise database queries.
There are as many ways to join (or
unite, or intersect) n tables as there
are phylogenies for n species. 4

• Let’s look at how we can infer a phylogenetic tree using the
parsimony idea. Having defined the cost f(x) of a tree x, we now
have to find the tree or trees with the least cost v.

• The simplest possible algorithm is exhaustive enumeration:

• This is a very practical algorithm, as long as X (the set of all
phylogenetic trees) is small and as long as we are able to construct
them all.

Exhaustive enumeration

To find tree x in set X for which cost f(x) is least:
1. best_x = last_tree, best_f_x := cost_of_last_tree
2. for each x in X

a. cost := f(x)
b. if cost < best_f_x then

I. best_x = x, best_f_x := cost
II. Else go to step 1

5

Counting the trees: rooted trees

• Thus, we are interested in how
many trees there are for given n.

• A rooted phylogeny means that we
not only know how much change
there has been, but also which way
it has gone.

• A phylogenetic tree with n leaves
will have n−1 internal nodes and
2n−2 edges.
– Example: let n = 5, then we have

4 internal nodes and 8 edges.
– An exception is n = 1.

6

Counting trees: towards Newick format

• Let’s start by making a tree containing
leaf 1. There is only one such tree, and it
has one internal node and one edge.

• Let us have two leafs 1 and 2, then we
have one internal node and since two
children are not ordered, we have only
one tree: (1, 2).

• Here ‘(’ stands for the left edge, ‘)’
stands for the right edge, and ‘,’ stands
for an imaginary ancestor (internal
node).

1

1 2

7

Counting trees: Newick format
• Let’s have 3 leaves: 1, 2 and 3. We have three different trees:

– Convention: child, which has the smallest left subtree goes
first and order of children does not matter.

1 2

3

3

1

2 1 3

2

((1, 2), 3) (1, (2, 3)) ((1, 3), 2)

8

1. One rooted tree with 1 leaf: 1
2. One rooted tree with 2 leaves: (1,2)
3. Three rooted trees with 3 leaves: ((1,2),3) ((1,3),2) (1,(2,3))
4. Fifteen rooted trees with 4 leaves:

(((1,2),3),4)
(((1,2),4),3)
(((1,3),2),4)
(((1,3),4),2)
(((1,4),2),3)
(((1,4),3),2)
((1,(2,3)),4)
((1,(2,4)),3)
((1,(3,4)),2)
((1,2),(3,4))
((1,3),(2,4))
((1,4),(2,3))
(1,((2,3),4))
(1,((2,4),3))
(1,(2,(3,4)))

Newick format: unique representation of a tree

Note: The order of the children of a
node is not significant, so there may be
many strings that represent the same
tree. One way to pick a unique string is
to order the children A B of a node so
that the child, which has the smallest
left subtree should go first. Having
unique representations makes it easier
to see if we all find the same tree.

9

Tree of Caminalcules in Newick format
• (((((((1,17),24),(16,27)),((((2,(3,22)),12),4),((5,18),23))),

(((19,26),29),20)),(((((7,15),13),8),(14,(25,28))),30)), (((6,10),(11,21)),9))

10

Number of trees grows exponentially

• Here is the table how fast the #
of trees grows with n

• It can be shown the number
of trees with n leaves is the
recursive product of
1×3×5×...×(2n−3).

• This calculation holds for
rooted trees.

• A rooted phylogeny means
that we not only know how
much change there has been,
but which way it has gone
(from a common ancestor).

n # of trees

1
2
3
4
5
6
7
8
.
.
.

20

1
1
3

15
105
945

10,395
135,135

.

.

.
8200794532637891559375

11

Unrooted trees
• In the Agatha Christie detective story "The Man in the Brown Suit",

the heroine's father was an eccentric anthropologist whose theory was
that humans were not descended from chimpanzees, no, chimpanzees
were degenerate humans!

• If the only OTUs you have are chimpanzees and humans (i.e no other
data like fossils), that's not as crazy as it sounds. All you have is a
difference, not a direction.

• Many phylogeny inference algorithms construct unrooted trees.
12

Unrooted trees
• Thus, in the case of unrooted phylogenies, there

are two kinds of nodes: leaves are on the
"outside" of the tree and internal nodes are on
the "inside" of the tree.

• Given an unrooted tree, we can construct a
rooted tree by choosing one of its leaves,
ripping the leaf off, and making that edge the
root edge.

• Conversely, given a rooted tree, we can make an
unrooted tree by pasting a new leaf onto the
root edge.

• So the number of unrooted trees with n leaves is
the same as the number of rooted trees with n−
1 leaves.

13

Rooted tree: an outgroup

• As computer scientists, we prefer to work with rooted trees. The
simplest way to ensure that we can do this is to use an outgroup.

• An outgroup is an OTU, which is similar enough to the OTUs we are
really interested in, to make comparisons possible, but different
enough that it's obviously outside the family.

• Finding an outgroup requires biological knowledge and judgement.
– For example, if we wanted to find a phylogeny for the apes

(people, chimps, bonobos, gorillas, orang-utans) we might choose
Rhesus monkeys.

• Computationally, we add the outgroup to the tree last, forcing it to
join up at the root.

14

Building a tree

• It is useful to have a dummy
"header" node at the very top of
the tree, which counts as the
parent of the root node – each
node now has a parent.

• When we insert the OTU, we do
so by splitting one of the existing
edges and inserting an internal
node with the new leaf as one of
its children and the old subtree as
its other child.

• Splitting an edge and splitting just
above a subtree amount to the
same thing; there are 2n-1
subtrees.

15

Algorithm for building a tree

1. Pick an existing node c (for
"child").

2. Let node p be the parent of c.
3. Let i be a new internal node.
4. Let x be a new leaf (eXternal

node) holding the OTU that is
to be added to the tree.

5. Make i be the x's parent and x
be i's right child.

6. Make i be the c's parent and c
be i's left child.

7. Make i be p's left child if c was
p's left child or p's right child if
c was p's right child.

8. Make p be i's parent.
9. Swap x for c.

c

p

i

x

i

x c

p

16

Algorithm for building a tree

1. Pick an existing subtree c
(for "child").

2. Let node p be the parent of
c.

3. Let i be a new internal
node.

4. Let x be a new leaf holding
the OTU that is to be added
to the tree.

5. Make i be x's parent and x
be i's right child.

6. Make i be c's parent and x
be i's left child.

7. Make i be p's left child if c
was p's left child or p's right
child if c was p's right child.

8. Make p be i's parent.
9. Swap x for c.

p

i

x

i

x

p

i’

x’ c’

p’

i’

x’ c’

p’

17

Undoing changes

• To undo the most recent
addition, you start from x.

• From that, p is i's parent, and c
is i's left child.

• As you are about to discard i,
you only have to worry about
restoring the link between p
and c.

i

x c

p

i

c

p

c

p

18

How to build the best tree?

• We know how to calculate cost.

• We know how to build a tree.

• We know the problem is NP complete. There is no efficient
way to locate a solution.

• How do we know at least in principle, in which order to add
OTUs so that the tree cost would be minimal?

• To find the “best” tree we have to use one of the
optimisation algorithms: greedy algorithm with random
restarts, hill-climbing, simulated annealing, genetic algorithm.

