
Emulation of
computer systems

COSC349—Cloud Computing Architecture
David Eyers

Learning objectives

• Define terms simulation, emulation and virtualisation

• Understand the meaning of host and guest in the
context of simulation, emulation and virtualisation

• Explain key challenges in software emulation of
computer systems

• Describe why cloud computing is reliant on an ability to
emulate (or virtualise) hardware in software

2COSC349 Lecture 2, 2020

Technical prerequisites for cloud computing

• Cloud computing has had extremely rapid growth
• Many different forces have aligned
• Not much time is spent looking backwards

• However many of its fundamental technologies have
been available for far longer than the public cloud
• Virtualisation is key underlying technology
• … but we first talk about emulation

3COSC349 Lecture 2, 2020

Some key terms to contrast

• Simulation
• Running a model of some system to observe its behaviour

• Emulation
• Originally described hardware-assisted simulation
• Now used to mean a machine imitating another machine

• Virtualisation
• Adding a supervisory layer to an existing system

• These terms have shifted in their use, over time
4COSC349 Lecture 2, 2020

Key cloud requirement—decoupling

• NIST: “resources requested come from a shared pool.”
• Existing server software infrastructure expects to run on

particular operating systems and hardware
• How do you run software systems like that?

• Need a mechanism to decouple OSs from hardware
• ... but computers should be deterministic machines
• ... and software can carry out work of deterministic machines
• therefore we should be able to pretend to provide the

hardware, in software
5COSC349 Lecture 2, 2020

Key point: hardware in software

• Simulation: we can create a software model of the
computer system we want to turn into software
• Simulation is often not real-time, though
• We also want our system to be usable like the hardware was

• Emulation: one machine pretending to be another so
that it's actually usable as a machine
• In particular, it will need to be interactive!

6COSC349 Lecture 2, 2020

Pre-cloud reasons to use emulation

•… noting that emulation typically has a high cost
• What's emulated will be less powerful than the emulation host

• Often is used for developing embedded systems
• Embedded target was difficult to debug on
• Lack of ease of access to hardware

• Now commonplace for use in mobile development
• Android emulation easily supports Android Runtime (ART)
• iOS simulator can avoid needing to emulate hardware:
• Apple have tight control over the i(Pad)OS software ecosystem

7COSC349 Lecture 2, 2020

Emulating the 6502 microprocessor

• A simple CPU (loved by at least Andrew and me...)
• Three 8-bit registers: A, X and Y
• 16-bit addresses, so 64 kilobytes of addressable RAM
• Used in many old personal computers
• Apple][series; Commodore 64; etc.

• The computer design around a CPU does input/output
• 6502-based computers memory-map I/O devices—i.e., some

memory addresses are special
• e.g., address 0xC030 on Apple][’s toggles the speaker

8COSC349 Lecture 2, 2020

Make some noise—specifics not in the exam

• Repeatedly toggle the speaker: create square-wave
• Below-left shows assembly code and explanation of lines
• Below-right is the corresponding hexadecimal machine code

9COSC349 Lecture 2, 2020

mainloop:
 LDX #$70
timingloop:
 DEX
 BNE timingloop
 BIT $C030
 JMP mainloop

300:
 A2 70
302:
 CA
 D0 FD
 2C 30 C0
 4C 00 03

A named label for jumping to.
Load 0x70 into X register.
Another named label for jumping to.
Decrease X register by one.
If X register isn’t zero, jump back.
Toggle the speaker.
Jump back to the mainloop label.

A dysfunctional emulator

• C-like pseudocode shown:
• variable to store program counter;
• variable to store the X register …

• Key point: this is a program that
emulates a 6502 CPU
• it “executes” 6502 machine code
• well, five opcode types, anyway …

10COSC349 Lecture 2, 2020

int8 opcode, register_x;
int16 address, pc = 0;
while(true){
 opcode = get_next(pc++);
 if(opcode==0xA2){
 register_x = get_next(pc++);
 }else if(opcode==0xCA){
 register_x -= 1;
 }else if(opcode==0xD0){
 pc += get_next(pc++);
 }else if(opcode==0x2C){
 address = get_address(pc);
 pc += 2;
 test_memory(address);
 }else if(opcode==0x4C){
 address = get_address(pc);
 pc = address;
 }
}

Challenges building emulators—timing

• The pseudocode we showed simulates the function of
the CPU opcodes… but that’s not the complete story

• Real CPUs take time to execute opcodes
• In some computers this timing is highly precise and matters!
• Emulating the precise timing as well as function, is challenging!

• 6502 code example clicks the speaker periodically
• On real Apple][computers, a perfect square wave produced
• On an Apple][emulator, the imperfections are noticeable

11COSC349 Lecture 2, 2020

Challenges building emulators—I/O

• A computer is a CPU and equipment for interacting
• Older computers rely on CPU control of I/O devices
• e.g., CPU may control disk drive motors—timing may be crucial

• Newer designs more likely delegate functionality
• e.g., DMA, separate controller chips within I/O devices

• Delegating functions: better separation of concerns
• ... but also increases the complexity of the systems
• e.g., everything ends up with firmware that needs bugs fixed …

12COSC349 Lecture 2, 2020

What I/O devices do we actually need?

• Old computers were exotic in their heterogeneity
• e.g., multiple hard disk interfaces in one machine (IDE+SCSI…)
• Cloud benefited from PCs becoming more regular (“boring”)

• Cloud compute node is typically just:
• CPU cores; RAM; block storage; network interface card (NIC)
• No need to support a complex range of graphics cards
• Don’t need graphics output at all, or can use NIC to ship graphics

• This makes the tenant’s “computer” easier to emulate

13COSC349 Lecture 2, 2020

Specific example of an emulator: MAME

• MAME—an emulation framework
• Commonly used to preserve vintage software’s functionality
• Currently emulates over 32,000 different individual computer

systems from the past 50 years

• Old arcade computers had complex designs with
multiple interacting CPUs, e.g., for sound / graphics
• MAME supports “ROM sets” that combine the code that each

CPU runs, and describes how these CPUs interact with each
other and the “hardware”, so that a display is shown

14COSC349 Lecture 2, 2020

MAME’s support of storage devices

• Storage devices in old systems may be timing-sensitive
• MAME has some support for common types of hardware

without needing to simulate chip-level timing and interactions

• MAME floppy subsystem
• Models how data is stored on floppy disks
• Important this is high-fidelity, since it may be used in DRM

• MAME SCSI subsystem
• Preserve software that supports old hardware, e.g., scanners

15COSC349 Lecture 2, 2020

Specific example of an emulator: QEMU

• QEMU: open source emulation and virtualisation
• CPU hosting is emulation rather than simulation
• QEMU aims to run as much of the guest system’s code on the

actual host CPU as possible

• Nonetheless, QEMU supports multiple CPU types:
• x86; PowerPC; Arm; …—but host computer running one type
• For non-native CPUs, dynamic binary translation cross-

compiles guest machine code into code the host CPU can run

16COSC349 Lecture 2, 2020

QEMU’s support of the cloud ecosystem

• QEMU’s software components used in VirtualBox

• QEMU defines formats of disk images—e.g., qcow2
• These are files that represent, e.g., virtual hard disks

• QEMU implemented many devices / subsystems:
• PIIX3 IDE for interacting with virtual devices like hard-disks
• VGA emulator
• Common network interface card emulation, e.g., R1000
• ACPI support

17COSC349 Lecture 2, 2020

