
Virtualisation
COSC349—Cloud Computing Architecture

David Eyers

Learning objectives

• Define virtualisation

• Give examples of virtualisation of many different types
of resource (e.g., CPU, memory, disk, network, etc.)

• Explain challenges in virtualising different resources

• Illustrate useful capabilities of virtual machines (VMs)

• Describe key techniques virtualisation engines use to
virtualise x86/x64 OSs (e.g., Linux, Windows, macOS, …)

2COSC349 Lecture 3, 2020

Defining virtualisation

• Simulation and emulation involve pretending to be
some different sort of machinery

• Virtualisation is about adding a layer for manageability
• e.g., many resources other than CPUs can be virtualised
• Virtualisation support is increasingly built into devices

• Virtualisation originally used in mainframe technology
• Mainframes typically have tight hardware+software binding
• Thus virtualisation meant sharing mainframes between

applications much as we share computer in a multitasking OS

3COSC349 Lecture 3, 2020

What resources commonly get virtualised?

• CPU—isolate and contain different environments

• Memory—many types of virtualisation abstraction

• Storage—“hard disk” in a file; directory subtree into VM

• Networks—map guest network needs onto host

• Displays—contain guest display within host display

• Other peripherals—e.g., USB stack in VirtualBox

4COSC349 Lecture 3, 2020

Virtual machines—VMs

• A set of virtualised resources can work together to
provide a complete virtual machine, or VM.
• VirtualBox effects what’s termed hardware virtualisation
• Explore VirtualBox GUI to see what can be configured
• CPU; RAM; storage all need to be set for a new VM
• GUI offers configuration of many other parameters
• Some options are obscure, but the documentation is good!

• More generally, a VM needs CPU, memory and ~ I/O

5COSC349 Lecture 3, 2020

Some key, useful capabilities of VMs

• Ability to pause and resume VMs
• Potential device interactions make this a non-trivial task!

• Can snapshot VMs’ state and restore from that state
• Handy to protect virtual resources such as hard disks

• Ability to clone new VMs from snapshots
• However making useful copies of machines needs further work:
• Windows SIDs need regeneration, or uniqueness fails

• Normally MAC addresses on network cards will be different

•With above, can migrate VMs from one host to another

6COSC349 Lecture 3, 2020

Contrast: Java virtual machine (JVM)

• Java virtual machine also has resource abstraction
• Targets a machine code for an abstract machine
• Highly portable (although actual chips were built, too…)

• CPU architecture is a mix between low-level and high-level
• stack machine—don’t need to decide a CPU register design

• some oddly high-level opcodes, e.g., the tableswitch instruction

• Java unusual: low-level language with huge std. library
• But aims to support app dev. within your OS, not of your OS
• For users, can feel like a separate OS when using Swing GUI…

7COSC349 Lecture 3, 2020

CPU support for OS user/kernel separation

•What does CPU do when you make a system call?
• Control must pass from user space to kernel space
• Not as simple as executing a function call…
• … but usually languages wrap syscalls in functions, e.g. printf()

• Often involves causing a software trap / exception
• CPU goes into protected mode (AKA supervisor mode, …)
• CPU saves program state of the caller
• Jumps to privileged exception handler code
• Eventually reverses protected mode, and restores CPU state

8COSC349 Lecture 3, 2020

Fast virtualisation of CPUs

• Goal: run guest machine code mostly on the host CPU

• Challenge: need isolation of host (and other guests)
• Guest OS kernel needs to believe it has CPU protected mode
• … but this can’t safely be the actual CPU protected mode

• Existing abstraction: Intel CPUs support four “rings”
• Rings isolate resources and define levels of privilege
• Ring 0: runs operating system kernel
• Ring 3: runs application code
• Other rings stay largely unused in most typical OSs

9COSC349 Lecture 3, 2020

Fast virtualisation of CPUs

• Typical Intel x86/x64 virtualisation remaps protection rings
• Host kernel runs on CPU ring 0
• Guest OS kernel expects CPU ring 0 but is run on host CPU ring 1
• Guest OS userspace is run on host ring 3
• Thus get "cheap" isolation of the desired sort… up to a point…

• Some operations can only actually be run from ring 0
• e.g., CPU instructions to interact with real hardware devices
• Common approach is to apply just-in-time re-compilation to

guest's code to avoid directly hitting these cases
• Mitigation is costly in terms of CPU effect

10COSC349 Lecture 3, 2020

Possible limits of CPU virtualisation

• Sometimes can't efficiently virtualise virtualisation hosts
—e.g., running VirtualBox (VB) inside a VirtualBox guest
• Can always emulate or simulate, but that could be really slow
• VB needs CPU hardware support for 64-bit guests… so if guest

runs VM host, that host’s guests lack CPU hardware support

•Whoa! Why would you want to do that anyway??
• For me, cross-platform teaching preparation (e.g., Docker lab)
• When debugging host and guests of VM system together
• Staging a VM platform before deploying to production

11COSC349 Lecture 3, 2020

Virtual Memory

• RAM already has many levels of abstraction

• Physical addresses relate to RAM chips

• Virtual addresses get mapped into physical addresses

• Also, paging divides up memory into blocks

• "Virtual memory" or “paging” in older OSs was all about
swapping processes' memory between RAM and disk
• RAM / disk swapping is just one potential use of virtual memory

12COSC349 Lecture 3, 2020

Fast virtualisation of memory

• Goal: guest memory use is host memory use

• Challenge: need to ensure protection of host memory

• Existing abstraction: virtual addresses; memory paging

• Solution: context switch to VM as you would a process
• CPU helps facilitate switching processes with large RAM use
• Prevent VM host from seeing real host’s memory management

• 32-bit versus 64-bit guests handled very differently
13COSC349 Lecture 3, 2020

Fast virtualisation of disk

• Goal: guest has manageable "hard disks"

• Challenge: can't safely share actual host hard disk

• Technically simple solution: guest HD is huge file on host
• Map requests for guest HD read/write (sectors) into file on host
• Wasteful: guest’s pointless management of non-real resources
• Host space can be optimised to extend HD file on-demand

• Ideally pass through capabilities from host better…

14COSC349 Lecture 3, 2020

Fast virtualisation of disk

• Can usually give a host’s HD to a guest (or HD partition)
• *nix even surface these as “files”: /dev/sda versus /dev/sda0
• However this is then fiddly to handle from the host side

• Newer OS filesystems can greatly assist
• Copy-on-Write or CoW—suits SSD devices
• Typically increasingly blur block and file level management
• e.g., Solaris ZFS; Apple's APFS; Microsoft's ReFS; Oracle's BTRFS

• CoW filesystems support very cheap snapshots
• Can directly support creating snapshots of VM storage

15COSC349 Lecture 3, 2020

Fast virtualisation of disk

• Some useful alternatives to disk-based booting
• Network boot
• CD-boot—read-only ISO file on host is guest “CD drive” content

• Can replace VM hard-disk with network
• Filesystem level: guest can use NFS to reach fileserver
• NFS is the network file system; an old Solaris protocol in use today:

• e.g., the cshome server in CS is reached using NFS

• Block level: guest can use iSCSI to reach remote block devices
• iSCSI is a way of accessing block devices over IP networks

16COSC349 Lecture 3, 2020

Fast virtualisation of network cards (NICs)

• Goal: support guest networking as directly as possible

• Existing abstractions: plenty, including bridges, NAT, …

• Higher-end NICs offload work from CPU
• Checksum calculations
• IP fragmentation handling

• Ensure guest OS delegates functions to its (virtual) NIC
• … since then virtualisation engine can support functions easily

17COSC349 Lecture 3, 2020

Fast virtualisation of graphics

• Goal: get highest-level requests from guest

• Existing abstractions: e.g., OpenGL, DirectX, …

• OpenGL allows virtualisation host to avoid emulating
graphics hardware—can largely pass through OpenGL
• Do not want host intercepting per-pixel operations!
• Need to avoid graphics “breaking out” of guest though

• Alternative: no gfx. card—Use RDP or VNC+framebuffer
18COSC349 Lecture 3, 2020

