
Paravirtualisation
COSC349—Cloud Computing Architecture

David Eyers

Learning objectives

• Define paravirtualisation

• Give a benefit and a downside of paravirtualisation

• Describe why timekeeping within a VM is difficult

• Give examples of different paravirtualised device
drivers and their purpose

2COSC349 Lecture 6, 2020

Paravirtualisation

• Historical sense of virtualisation was that VMs do not
know that they are virtualised
• However it can be ideal that VMs know they're virtual!
• … e.g., otherwise VMs may waste time managing fake devices

• Paravirtualisation describes a VMM that runs VM-aware OSs

• Paravirtualization downside: VM OS needs modification

• Upside: guest requests privileged operations from VMM
• Avoid frequent need to intercept guest OS kernel (inefficient)

3COSC349 Lecture 6, 2020

The Xen project relied on paravirtualisation

• Paravirtualisation allows the Xen VMM to be very small
• ... which in turn made it practical for University development

• Xen VMM was designed first, and then OSs ported to it
• Paravirtualisation of Linux was fairly straightforward
• Paravirtualised Windows XP too

• Microsoft did not release the Xen-compatible Windows
• (It may well have not been a complete implementation.)
• ... but CPU support for virtualisation arrived soon after
• Thus didn't need to try to get Microsoft to cooperate with Xen

4COSC349 Lecture 6, 2020

Xen, dom0 and Linux kernels

• Recall that minimisation of Xen's VMM meant a special
VM (dom0) was used to manage the actual hardware
• dom0 Linux VM contains device drivers for real host hardware
• dom0 Linux VM directly accesses these hardware devices

• Linux kernels could be patched—“xenified” for dom0
• Many distributions provided convenient access to Xen kernels

• Can use non-Linux dom0s, e.g., NetBSD, OpenSolaris, …

5COSC349 Lecture 6, 2020

Mainline Linux is now paravirtualisable

• In 2006 Xen, IBM, Red Hat, and VMware met and
agreed to collaborate on paravirt-ops initiative
• Provides a way for Linux to know to paravirtualise itself
• … but also to boot normally if not running over a VMM

• Agnostic to the underlying VMM, and supports many:
• Xen, VMware Workstation, VirtualBox, …

• Since Linux 2.6.37 (Jan 2011) mainline Linux kernels can
be efficient Xen dom0 and domU without modification
• However this is mostly about paravirtualising CPU features
• Hardware device drivers we will discuss later

6COSC349 Lecture 6, 2020

Potential VM pain point: timekeeping

• Consider how an OS can know what the time of day is,
and how fast time is moving forwards (hopefully!)

• Time-of-day is maintained by battery-backed clock
• Hardware clock access is really slow compared to CPU:
• read/write hardware clock only on OS startup/shutdown
• maintain time of day using high frequency OS time source

•Worse still: time of day needs resynchronisation
• e.g., leap seconds are declared when necessary
• Also timekeeping / timer components will drift

7COSC349 Lecture 6, 2020

Still trying to keep time...

• Timesource used by Linux? You can choose any of:
• HPET—high precision event timer (hardware)
• PIT—(older) programmable interval timer (hardware)
• TSC—timestamp counter (built into CPU)
• ACPI_PM—ACPI power management timer (hardware)
• Cyclone—IBM EXA time source: some Itanium thing …
• SCX200_HRT—… some high resolution timer …

• These specifics are not in the exam!

• Haven’t even brought virtualisation into picture yet…

8COSC349 Lecture 6, 2020

Virtualisation and clock sources?

• x86 hypervisors virtualise PIT, RTC, HPET, ACPI_PM, but
the read speeds are too slow for a good clock source

• TSC is the most common non-VM clock source:
• auto incrementing, high precision counter within the CPU
• can be read from user space in one instruction (RDTSC)
• … but counter can be reset while system is running

• Migrating a VM to a different physical host (+VMM)?
• TSCs will not be the same, and thus might jump backwards
• TSC frequencies need not be the same

9COSC349 Lecture 6, 2020

OK, so how do VMs measure time passing?

• Host OS can devote resources to timekeeping
• but VM guest OSs cannot sensibly do so

• Xen and KVM use the pvclock protocol
• Shares a structure between host and guest
• Allows guests to determine a reasonable TSC equivalent

• Intel VT-x added a control for hosts to add TSC offset
• but TSC frequency needs control too… (Intel added in 2015)

10COSC349 Lecture 6, 2020

Paravirtualised device drivers

•We discussed paravirtualising OS kernel functions

• Often hardware is accessed through device drivers
• (Too many different types to build directly into OS effectively!)

• Can use paravirtualised dev. drivers in unmodified OS
• VirtualBox’s guest extensions; VMware’s Guest Tools; Xen’s …

• virtio provides a set of common emulated devices
• Specifically the front-end drivers within the guest OS
• Back-end drivers map virtio API to real device drivers in host OS

11COSC349 Lecture 6, 2020

The five typical front-end drivers in virtio

• vrtio-blk—i.e., block devices: hard disks, DVD drives, …

• vrtio-net—i.e., network adapters

• virtio-pci—i.e., PCI pass through
• Recall that PCI is for interconnecting peripherals with the CPU
• e.g., hot-pluggable storage devices

• virtio-console—i.e., the keyboard and screen
• Well, very basic versions of them, but useful for diagnostics

• virtio-balloon—for managing guest memory size
• ... see next slide

12COSC349 Lecture 6, 2020

Dynamically changing guest memory size

•When an OS starts up, it determines its memory size
• This amount is usually then fixed until the point of reboot
• exception: some types of server hardware ($$$)

• Paging means host memory can be over-provisioned
• VMs won’t cause problems if they don’t use all their memory
• But guest OS may fill guest memory with unimportant caches

• Balloon driver is a process in the VM that allocates RAM
• … but communicates with VMM to give it back to the host OS!
• Analogy is inflating RAM balloon—guest OS minimises its use

13COSC349 Lecture 6, 2020

