
Operating system level
virtualisation

COSC349—Cloud Computing Architecture
David Eyers

Learning objectives

• Enumerate multiple motivations for resource isolation

• Can define OS-level virtualisation

• Explain a benefit & a downside of OS-level virtualisation

• Appreciate that OS-level virtualisation is an old idea

• Can describe the role of Linux namespaces and
cgroups in effecting Linux-based OS-level virtualisation

2COSC349 Lecture 7, 2020

Motivations for isolation of resources

• Typical motivation presented so far has been security
• Maintain confidentiality & integrity of separate users’ data

• Isolation can also be to support software manageability
• Applications that need specific, conflicting support software versions
• Runtime environments may allow local installation, e.g., Python ‘virtualenv’s

• Want to be able to install and cleanly remove sets of software
• Linux distribution package managers can provide this support

• Also to support testing within software development
• Allow test environments to be created and cleanly destroyed, rapidly

3COSC349 Lecture 7, 2020

Computing has many types of isolation

• Application-level (i.e., in-application) isolation

• Threads—share memory within one process

• OS processes—each has its own address space

• Userspaces—i.e., everything above the OS kernel

• Virtual machines—full or paravirtualised

• Today's lecture focus: isolating separate userspaces
• Also known as OS-level virtualisation—leading toward Docker

4COSC349 Lecture 7, 2020

Cheaper isolation if OS kernel is secure

• Trusting OS kernel security allows for cheap isolation
• (i.e., cheaper than needing to run VMs containing OS kernels)

•We have talked about userspace / kernel separation
• Also consider user / user separation
• Multi-user OSs assume user processes are successfully isolated

• Android embodies this, by allocating user IDs for apps
• Thus each application's processes are (assumed) isolated

5COSC349 Lecture 7, 2020

“Old school” chroot jails

• Unix servers have to handle users that may be malign
• Common historical example was running public FTP servers
• Anonymous users could log into those servers
• FTP as a protocol allows quite a lot of power over the server
• Needed to cut down what anonymous users could do

• Solution: change the perceived root of the filesystem
• i.e., a ‘chroot jail’—usefully changes available executables
• Unix accesses binaries from /bin, libraries from /lib, etc.
• Changing the meaning of / mitigates many vulnerabilities

6COSC349 Lecture 7, 2020

BSD Jails—OS-level virtualisation since Y2K

• BSD Jails take resource partitioning beyond the filesystem
• Isolate process IDs, root user, network, device access
• Also use a chroot jail to effect filesystem isolation

• Can help avoiding privilege escalation
• Successful break in to server can’t scan filesystem for vulnerabilities,
e.g., reading /etc/shadow and trying to crack weak passwords

• Many operations are blocked within BSD Jaills, e.g.:
• loading kernel modules, changing network interfaces, mounting

and unmounting filesystems, etc.

7COSC349 Lecture 7, 2020

Linux-vserver—Linux follows BSD in 2001

• Its isolation groups named virtual private servers (VPS)
• Organisations used to run web server in “colo” data centres
• Data centres offer reliable power, internet connectivity, etc.
• You co-located your servers with others’ in the data centre

• Want to aggregate these web servers, but isolate resources

• Starting a VPS involves starting another init process
• init has process ID 1 and is the parent of all Linux processes
• Isolation rather than virtualisation of storage and NICs
• e.g., map VPS’ files into subtrees of single filesystem

8COSC349 Lecture 7, 2020

Solaris Zones—2004

• Solaris was Sun’s Unix variant. Version 10 introduced:
• Solaris ‘Zones’—i.e., separate userspaces over one kernel
• Solaris ZFS—a copy-on-write filesystem with zones support
• DTrace—in-kernel debugging (ported to BSDs including macOS)

• Solaris was, at least historically, more secure than Linux
• … it was also much more expensive than Linux
• Sun later open-sourced Solaris… then the company imploded
• Oracle still support & sell Solaris; also many open-source variants

9COSC349 Lecture 7, 2020

Solaris ZFS filesystem

• ZFS was one of the mainstream filesystems that unifies
file-level and block-level management
• Contrast Linux: an ext4 filesystem is stored on a disk partition
• (LVM2 allows more flexibility by “virtualising” hard disk partitions.)

• ZFS instead takes storage into a “pool” and allocates
block extents and filesystems from that pool
• By blurring block-level and file-level layers, ZFS can better

optimise performance and resource usage
• Installing a new hard disk can extend pool and all filesystems

10COSC349 Lecture 7, 2020

Solaris ZFS integration with Zones

• ZFS was designed to support OS-level virtualisation
• ZFS filesystems can be mounted hierarchically
• (Commercial OSs often coordinate feature development…)

• A Zone’s filesystem root is a sub-path of host filesystem

• On disk, Zones’ data may be interleaved
• … unlike isolated partitions on a conventional hard-disk
• Advantage is sharing underlying redundancy, backup,

deduplication and resource use across all zones’ storage

11COSC349 Lecture 7, 2020

Solaris Crossbow—virtualised networking

•We’ve seen VirtualBox / macOS net config. complexity
• Labs involve NATing, NAT Networks, Host only networks, etc.

• Solaris Crossbow’s virtualised networking support:
• Provides all virtual machines / zones with IP presence
• Allows host’s resources to be flexibly shared
• e.g., bandwidth can be dynamically apportioned

• Solaris theme: flexible provisioning of host resources
• e.g., give host lots of disks; many NICs—can dynamically share

12COSC349 Lecture 7, 2020

Back to Linux… since it powers the cloud

• Multifaceted Linux features often first componentised
• Linux has a vast number of stakeholders
• Difficult to coordinate stakeholders across different Linux parts

• Effective OS-level virtualisation on Linux follows this practice
• e.g., relying on separate cgroups and namespaces components

•We’re setting the scene for Docker containers …
• … but also explaining why there are so many different

container systems, e.g., LXC, LXD, lmctfy, Docker, OpenVZ,
Linux-vserver, Rkt, Singularity, …

13COSC349 Lecture 7, 2020

Linux kernel namespaces (first release 2002)

• Namespaces only show processes subsets of resources
• Two namespaces can reuse the same IDs (independently)
• e.g., user IDs, process IDs, filenames, etc.

• Or a device only appears within one namespace
• e.g., network interfaces, etc.

• Namespaces used by container frameworks (~Docker)
• Isolating containers’ namespaces increases security
• also simplifies software management (simpler resource alloc.)

14COSC349 Lecture 7, 2020

Linux cgroups (first release 2007)

• A control group (cgroup) defines parameters about
the resource use of a set of processes, e.g.:
• limit total memory available to group of processes
• indicate non-even share of device input/output priority
• affect CPU scheduling to the group
• cgroups also can assist accounting for resource use

• cgroups can facilitate starting / stopping processes
• important for snapshot functionality

15COSC349 Lecture 7, 2020

