
Unikernels
COSC349—Cloud Computing Architecture

David Eyers

Learning objectives

• Define the term ‘unikernel'
• Contrast degree of specialisation within VM types, e.g.,

full hardware VMs, Docker containers, and unikernels

• Enumerate good & bad points about unikernels

• Sketch some existing unikernel projects

• Describe the typical role of VMM in unikernel systems

2COSC349 Lecture 9, 2020

Specialisation versus generalisation

•We’ve seen styles of virtualisation ranging from:
• general purpose: VirtualBox—full hardware virtualisation
• less general purpose: Vagrant—for developers
• specific purpose: Docker—VMs do one specific job (usually)

• Docker containers’ Unix shells used in emergencies
• Shouldn’t need general-purpose OS interactions

• Unikernels are an even more specific form of VM
• e.g., no Unix shell at all, possibly no multitasking, …

3COSC349 Lecture 9, 2020

What can be stripped from a Docker image?

• Some examples of the types of stripping down possible:
• Assume never need to install software: no package system
• Assume that we don’t need to use a shell: no shell
• This means the OS has to start the application directly

• Assume configuration can be “baked in”: no filesystem
• Assume no operating system driver changes

• VM ends up behaving like an executable program
• … except it contains what it needs of its own operating system

4COSC349 Lecture 9, 2020

Unikernels

• Unikernels are OS kernels that can only do one job
• This is not a new idea: Library OSs involve the same notion

• Benefits:
• Extremely fast boot times
• Very small memory overhead
• Small surface area in terms of potential security problems

• Downsides:
• Building / changing unikernels often expensive (time+resource)

5COSC349 Lecture 9, 2020

Present-day unikernel viability

• Unikernels don’t run on bare metal, instead on VMMs

• Unikernels’ “hardware” is typically paravirtual devices
• Works fine for network, block storage and simple console I/O
• Real hardware device drivers are within VMM (or Xen dom0)
• (Not including device drivers is practical rather than technical)

• Many applications can be built using HTTP(S), alone
• e.g., VMs offering and consuming micro-services
• VM does not have persistent state
• Interact with external servers to effect persistent storage

6COSC349 Lecture 9, 2020

Challenge of rebuilding unikernels

• Run-time aspects become build-time dependencies
• Changing anything can involve significant compile+link effort
• Link process made cheaper in OSs by dynamic link libraries
• OS libraries can be updated independently of program code

• Compilers usually rebuild quickly from intermediate files
• Note the typical conflicting priorities of compiler design:
• Speed of executable, size of executable, speed of compilation, …

• Notion of "cloud native" software is spreading
• Over time, expect changes in code building environment

7COSC349 Lecture 9, 2020

Lots of unikernel projects in recent years

• ClickOS, Clive, Drawbridge, HaLVM, HermitCore, OSv,
IncludeOS, LING, MirageOS, Rumprun, runtime.js, UniK
• Many of these projects are programming-language led

• Appealing route for doing clean-slate OS design
• However so much OS-code is C/C++; can't afford to start over
• So working above the VMM is a good compromise

• Many are functional PLs: Haskell, Erlang, OCaml, …
• There typically won’t be userspace / kernel division in unikernel
• Thus want “safe” programming languages

8COSC349 Lecture 9, 2020

LING—an Erlang microkernel framework

• Erlang language popularised actors & supervisor trees
• Ericsson telephone exchange software—want zero downtime
• Live software updates
• Good language for microservices

• Erlang-on-Xen—https://github.com/cloudozer/ling
• Mitigates vulnerabilities: read-only filesystem, no OpenSSL
• Responsive: 100ms boot to shell
• Doesn’t leave processes waiting for incoming network requests
• Can boot unikernels fast enough to start them on demand

9COSC349 Lecture 9, 2020

https://github.com/cloudozer/ling
https://github.com/cloudozer/ling

IncludeOS

• IncludeOS is implemented in C++, and supports C/C++

• Event-driven approach to interacting with OS
• Similar to the approach of Node.js—asynchronous callbacks
• Cooperative multitasking is a common unikernel design:
• Avoids need for task schedulers, not least if VMM already has one

• Design priorities:
• Security: unikernel image is immutable; used components only
• Size: typical applications use 2–3MB; only need 4–5MB RAM
• Performance: no context switches; whole system optimisation

10COSC349 Lecture 9, 2020

MirageOS

• Uses OCaml: functional, OO, statically typed language
• Impure functional language—allows side-effects and state
• return value of max(Set) should just depend on inputs
• a function like malloc() won’t return the same value for same parameters

• OCaml has been shown to outpace C code in some contexts
• e.g., when OCaml can optimise code to avoid copying of memory

• MirageOS boots on Xen—OCaml Labs & Xen teams overlap
• Early versions had no filesystem
• … but it’s practical for REST over HTTPS to effect network apps
• Example application: self-hosting website

11COSC349 Lecture 9, 2020

