
Platform as a Service
(PaaS)

COSC349—Cloud Computing Architecture
David Eyers

Learning objectives

• Define Platform as a Service (PaaS)

• Contrast PaaS with IaaS (and SaaS)

• Indicate good and bad points about PaaS

• Sketch how an application might be deployed using a
given PaaS platform

• Explain how Docker and other container technology
has affected PaaS offerings

2COSC349 Lecture 11, 2020

PaaS—Platform as a Service

• PaaS is the middle ground between IaaS and SaaS
• You do not manage the VM infrastructure directly (that’s IaaS)
• However you can’t just use application software (that’s SaaS)
• Aimed at use by software developers

• ‘Platform’ is a fairly broad and imprecise term
• One view is that you build your apps sharing tools that your

cloud provider would use to manage their cloud platform

• Cloud provider will see your software components
• In IaaS just sees VMs, and not what role they are performing

3COSC349 Lecture 11, 2020

Benefits and disadvantages of PaaS

• Focus on your application logic, not managing VMs
• Just get the cloud environment, such as APIs to work with
• Cloud provider can leverage economies of scale

• Disadvantages: potentially get lock-in
• More likely API is tied to specific software
• Although mature interchange languages like SQL mitigate this

• Lack of flexibility: public PaaS isn’t necessarily very extensible
• Also don’t have complete control over the cloud’s services

4COSC349 Lecture 11, 2020

PaaS examples emerged soon after IaaS

• Heroku (since 2007) provided cloud hosting of Ruby
• Was PaaS, since you deployed your Ruby source code
• Like many popular PaaS offerings, it is hosted on Amazon EC2

• Google App Engine (2008)
• Google already had scalable APIs for their own software
• App Engine was a way to turn that into a service for sale

• RedHat OpenShift (2011)—closed then open source…
• Sought to effect paradigm shift: scalable components (v2)

• VMware Cloud Foundry (2011)—always open source
5COSC349 Lecture 11, 2020

Heroku

• Ruby on Rails (2004) promoted Ruby for web coding
• popularised model-view-controller; usually web+database
• Ruby’s portability is quite good, e.g., it’s a high-level language

• Deploying code to Heroku typically done using git
• Pushing commits to Heroku causes deployment of your code

• Language-focused clouds don’t have to be Ruby
• Now also Node.js, Clojure, Scala, PHP, Python, Go, Java, …

• Other deployment methods added: Dropbox; an API
• HTTP-focused web accessibility (e.g., web and REST)

6COSC349 Lecture 11, 2020

Google App Engine (GAE)

• Lots of development language options:
• e.g., Java, Python, Go, PHP, Node.js, …

• Limitations in terms of software behaviour
• Code can only react to HTTP requests (including self-requests)

• Database: originally Google Cloud Datastore
• Now also Google's Cloud SQL: direct legacy SQL support

• Overall makes coding easy, but limited in form

• Lock-in concerns mitigated (?) by FOSS AppScale, etc.

7COSC349 Lecture 11, 2020

RedHat OpenShift v1 and v2

• Applications used ‘gears’ to do their computing
• Gears used namespaces, cgroups and SELinux for isolation
• Free-tier allowed three non-scalable gears (until platform EOL)
• I hosted a test Drupal website and an Etherpad server…

• Notion of ‘cartridges’ that can be combined in a gear
• Language cartridges such as Ruby on Rails
• Database cartridges such as MySQL or MongoDB

• Cartridges auto-interconnected, e.g., Rails + MySQL

8COSC349 Lecture 11, 2020

RedHat OpenShift version 3

• Gears turned into Docker containers

• Orchestration of containers uses Kubernetes
• (We’ll discuss orchestration later…)
• OpenShift 2 had a custom broker to manage multi-gear apps

• Images are mapped 1:1 to containers
• OpenShift 2 cartridges could be loaded N:1 into a gear

• OpenShift 3 uses images like any other Docker client
• OpenShift 2 required a code repository within OpenShift itself

9COSC349 Lecture 11, 2020

Cloud Foundry

• Started within VMware—open source throughout
• Targets multiple execution platforms
• e.g., private clusters running VMware vSphere, OpenStack
• All the IaaS cloud providers we’ve discussed

• Cloud Foundry supports software ‘lifecycles'
• Buildpack lifecycle: Java; JavaScript; Ruby; Python; PHP; Go;

notably adds .NET and .NET Core
• Docker containers can be run in a different type of lifecycle

10COSC349 Lecture 11, 2020

PaaS and containers?

• Containers rose to prominence after PaaS began
• RedHat OpenShift redesigned itself for Docker + Kubernetes

• Amazon ECS provides two container solutions
• EC2 launch type can help manage a cluster of VMs
• Essentially is assisted IaaS: you specify container server EC2 types

• Amazon Fargate type accepts container images directly
• No management of VMs, so much more PaaS-like

• Google Kubernetes Engine
• Uses Google Compute Engine nodes as workers

11COSC349 Lecture 11, 2020

Typical services provided by PaaS

• Language runtime
• Possibly as a framework, e.g., rake rather than just Ruby

• Database—your PL usually doesn’t include a DB

• Load balancing and autoscaling layer

•While AWS is IaaS-focused, it provides many PaaS tools
• Elastic Load Balancer works with HTTP and other protocols
• Amazon Relational Database Service
• Offerings like Elastic MapReduce (EMR)—managed Hadoop

12COSC349 Lecture 11, 2020

AWS database offerings

•We’ll focus on relational databases—in common use
• Amazon provides many non-relational databases too

• DIY: allocate an EC2 instance and install a database
• You can install whatever you want …
• but patching, scaling and backup/restore are your problem

• Amazon Relational Database Service (RDS)
• Choose: PostgreSQL, MySQL, MariaDB, Oracle, SQL Server…
• Patching, scaling and backup/restore are Amazon’s problem

• Amazon Aurora: choose PostgreSQL or MySQL variant
13COSC349 Lecture 11, 2020

Amazon Aurora

• Amazon realised MySQL on EC2 had too many layers
• MySQL optimising file access on disk—opaque to Amazon

• But MySQL has pluggable datable storage engines
• In Aurora, Amazon switches in their own database engine
• All data has 6 replicas across 3 availability zones
• Database is backed up continuously to S3
• Performance+reliability boost is Amazon-specific: is this lock in?

• Amazon later reengineered PostgreSQL in a similar way

14COSC349 Lecture 11, 2020

