

Cloud and data centre networking

COSC349—Cloud Computing Architecture

David Eyers

Learning objectives

- Illustrate how network traffic on users' devices reaches servers within cloud data-centres
- Explain what a content delivery network (CDN) is and the key features it can provide
- Describe some key design considerations for networks in large data-centres
- Contrast the typical traffic patterns in large organisational networks (e.g., the University of Otago) with those of data-centre networks

Internet access to the cloud

- Consider IP packet travelling from web browser to cloud
- First data makes its way to the edge of UoO network:
 - Wi-Fi in your laptop to layer-2 wireless access points (APs)
 - e.g., many lecture theatres contain between 1 and 3 visible APs
 - Transition from layer-2 (MAC) to layer-3 (IP) occurs around here
 - Ethernet switches in buildings aggregate traffic
 - Likely that there are hundreds of ethernet switch devices at UoO
 - Fibre optic campus cabling brings traffic to ITS data centres
 - ITS data centres apply internet traffic control at campus router
 - Then traffic leaves the University network (now a 100Gbps link)

COSC349 Lecture 17, 2020

Onto the NZ Internet

- Assume our traffic is 'academic':
 - Goes to our educational internet provider, REANNZ
- REANNZ 'ladder' topology:
 - 23 points of presence (PoPs)
 - Primary backbone: 100 Gbps
 - Secondary backbone: 10 / 20 Gbps
 - 'rungs' provide redundancy
 - RTT DUD↔AKL around 23 ms
 - RTT: round trip time

... and thence to the international Internet

These lines are indicative only and do not show precise routes.

COSC349 Lecture 17, 2020

Using AWS or Azure via REANNZ

- Typical commercial use of cloud traverses Internet
 - Border Gateway Protocol used for global-scale IP routing
 - BGP numbers 'autonomous systems' for routing IP prefixes
 - 90,000+ autonomous system numbers registered by 2019
 - By design, not known which autonomous systems will be used
- Large cloud providers facilitate more direct IP routing
 - AWS DirectConnect maps clients' networks into Amazon cloud
 - uses 802.1q VLANs: virtual Ethernets supported by most switches
 - Azure ExpressRoute maps clients' networks into Microsoft cloud
 - uses Multiprotocol Label Switching (MPLS): label-based routing

Caching within New Zealand

- Lots of content is cached within New Zealand
 - Far better to do so than redundantly use International links
 - ... but needs appropriate software support
- Commercial ISPs and REANNZ host caches, e.g.,
 - Google, Facebook, Akamai and Netflix all hosted on REANNZ
 - Caches may be installed at expense of origin organisation
 - Expense will be worth it, to improve their customers' experience
- Often this sort of caching relates to static content
 - ... but this includes large objects such as high-definition movies

Content Delivery Networks (CDNs)

- A CDN is a globally distributed network of edge servers
 - CDNs can be thought of as distributed caching as a service
 - & go beyond caches: compression, edge computing, routing
- Amazon CloudFront is AWS's CDN offering (190 PoPs)
 - Caching of static content regionally + some edge computing
 - Automatic failover between multiple AWS origin servers
 - Easy integration with AWS services such as EC2 and S3
 - Client device detection; client country detection
 - DDoS protection; certificate management; threat scanning

Data-centre networking

- Assume our traffic needs to reach the origin server VM
- Having traversed Internet, reach a data-centre (DC)
 - Data-centres long pre-date the public cloud—different types
- DCs are often constrained by their network links
 - ... although this does depend on the workloads being run
 - Typical trade off provisioning peak and average load (+\$\$\$)
- Big cloud providers' DCs are now termed 'hyperscale'
 - Have very high efficiencies: power; cooling; networking, ...

DC physical and network layout

- Data-centres have structured physical layout
 - Physical servers are grouped into racks, which usually provide:
 - intra-rack network switches; power distribution; wiring management
 - Racks grouped into aisles or zones—for maintenance / access
- DC networking is hierarchically organised:
 - Virtual networking within physical servers themselves
 - Top-of-rack switches installed within racks
 - Inter-rack and Internet connectivity—but with what topology?

DC networking requires a topology

- Wiring up complete graph isn't practical ($\mathcal{O}(n^2)$ cost)
- So need topology that's cheap but also effective
 - Must consider degrees of freedom regarding contention
- High Performance Computing (HPC) has explored this
 - HPC (supercomputing) often has structured data processing
 - Topologies used include: mesh hypercube; fat tree (Clos)
- HPC often uses high numbers of concurrent flows
 - In contrast, cloud workloads are likely to be more bursty
 - Clusters of activity will depend on application; time-of-day; ...

DC network designs: three-tier (old)

- A historically common, hierarchical DC network design:
 - Access layer switches connect to servers
 - Typically commodity devices
 - Aggregate layer connect access layer
 - Core layer connect aggregate layer to Internet
 - Separation of concerns between the different layers
- Upper-level routers: highly specialised and expensive
 - Designed to sustain high bandwidth in all directions
 - Core routers' prices have been in the order of \$100,000 a piece

Common cloud DC network design: fat tree

- Fat tree structures have thicker branches near root
 - In the network case, this means higher bandwidth links
 - ... however such "links" need not be a single "cable"
- Modern trend is toward using commodity switching kit
 - Create an aggregation switch from a set of cheaper switches
 - Employs a particular addressing scheme and routing algorithm
- Often related to a topology known as a Clos network
 - Have ingress, middle and egress stages built from switches
 - ... and the structure can be used recursively (expand middle)

Types of traffic and effect on workload

- Domestic / campus traffic? Typically to/from Internet
 - (Also could be to/from an internal DC like CS or ITS)
 - This means that the node-to-node internal network use is small
- Consider scale-out applications in datacenter instead
 - Interacting servers do so with distributed effect & high volume
 - (Although many servers won't interact—e.g., different tenants' VMs)
- Some 'interesting' traffic patterns: (i.e., non-unicast)
 - Anycast—traffic reaches any 'nearby' applicable host
 - Multicast or 1–N—traffic is being sent to multiple hosts

Open Compute Project

- Initiated by Facebook (Prineville Oregon DC's designs)
 - DCs just an overhead for them: expenses down → profit up
 - Aiming to incorporate commodity parts in custom, open designs
 - Google had previously pioneered using commodity kit for servers
 - Covers: DC facility; racks; power; networking; servers; storage; ...
- OCP networking scope includes:
 - Disaggregated and open network hardware and software
 - Automated configuration management and provisioning
 - Switch motherboard hardware and form-factor mapping
 - Also, Software Defined Networking (SDN) ... (see next lecture...)