
Function as a Service / 
Serverless Computing
COSC349—Cloud Computing Architecture 

David Eyers



Learning objectives

• Explain what Function as a Service (FaaS) is 

• Contrast FaaS with IaaS / PaaS / SaaS 

• Indicate why FaaS might suit Internet of Things apps. 

• Understand why FaaS systems are stateless & reactive 

• Sketch how FaaS is supporting rise of edge computing

2COSC349 Lecture 19, 2020



Function as a Service (FaaS)

• FaaS is also known as serverless computing 
• i.e., trend away from needing to considering servers at all 
• Tenant’s focus is instead just providing functions to execute 
• c.f., lambda functions: anonymous functions passed to functions 

• Variety of popular languages available for writing functions 

• FaaS is embodies data flow programming 
• i.e., transformations to data happen when data is ready 
• e.g., change to a spreadsheet cell—also data flow programming 

• Note that the functions themselves are probably procedural

3COSC349 Lecture 19, 2020



Distributed stream processing systems

• Contrast DBs with distributed stream processing systems 
• Databases run queries when instructed to do so 

• Stream processing systems define a data flow graph 
• Sources—tuples are emitted from them 
• Operators—nodes that transform n input streams to m outputs 
• Sinks—tuples are output or stored 

• Computing is triggered by new tuples appearing 

• Many high-quality, scale-out, open source DSPSs: 
• Apache Storm, Apache Spark Streaming, Apache Flink, …

4COSC349 Lecture 19, 2020



Event-driven programming

• In IaaS, VM is yours, so your code is always running 

• In PaaS, still usually a sense that your code is active 
• PaaS auto-scales the server instances that run your code 

• In FaaS, your code operates in a reactive style 
• Reactive programming typically relies on callbacks 
• Some sort of shared event dispatcher issues callbacks 
• You do not need to be aware of server instances at all 

• Of course servers still need to run your code… 
• FaaS may have wide variance in function execution latency

5COSC349 Lecture 19, 2020



AWS Lambda—public FaaS cloud

• AWS Lambda (2014) was first successful FaaS, then  
• Google Cloud Functions, Microsoft Azure Functions, 
• Apache OpenWhisk (open source—initiated by IBM), … 

• AWS Lambda provides core support for many PLs: 
• Python, Java, Node.js, Go, Ruby, and C# (.Net core) 
• Other effects can use call-outs to Linux executables 

• Aims for millisecond startup latency 
• Caching will likely mean significant speed-up from recent use

6COSC349 Lecture 19, 2020



Pricing for AWS Lambda

• Pricing based on number of requests and their duration 

• Request cost is $0.20 per million per month 
• … but the first million requests per month are free 

• Duration cost is $0.0000166667 per GB-second 
• So involves both time and allocated memory you’ve chosen 
• … but the first 400,000 GB-seconds per month are free 
• Memory allocation can be as low as 128 MB 
• (So the free tier will go a long way, for small-scale applications)

7COSC349 Lecture 19, 2020



AWS Lambda event sources

• Typical use cases for FaaS include reactions such as: 
• Objects are updated or added to an S3 bucket 
• Updates are made to an Amazon database platform 
• Sensor readings arrive to the cloud (we will discuss IoT soon…) 

• Only want to pay when your code is running: 
• Avoid paying for overheads like time to start/stop VM 
• Avoid paying to keep VMs in a ready state to handle requests 

• Lambda well suits app-specific interlinking of AWS tools

8COSC349 Lecture 19, 2020



Internet of Things (IoT)

• IoT embodies ambition of all devices being networked 
• Devices including toasters, streetlights, cars, wireless sensors,… 
• (Many IoT devices have low-quality security engineering) 

• For sensor networks, want to offload data processing 
• e.g., extend lifetime of battery-powered devices 

• Often sensor data will be disseminated periodically 
• FaaS facilitates app-specific data checks and transformations 
• Provides a reliable endpoint for real-world devices to interact with

9COSC349 Lecture 19, 2020



Edge computing

• Cloud computing suits many types of jobs 
• However some data processing needs distribution 
• (Maintain historical central/decentralised computing oscillation?) 

• Edge computing is half-way between cloud and IoT 
• Often full-size computing devices, widely distributed 
• ... but not at cluster scale (so not scale-out edge computing) 

• CloudFront CDN can run AWS Lambda functions 
• e.g., personalise web content within any AWS Region’s DC

10COSC349 Lecture 19, 2020



Stateless functions

• Often a requirement that transformers are stateless 
• Easy to run in parallel when invocations are independent 
• Greatly helps scaling up applications 

• Fault tolerance: can re-run failed functions safety 
• Also can run a set of functions to check for consistent answer 
• May increase function’s input to compensate for statelessness 

• Likely to require reengineering of legacy apps 
• Most apps’ functions are not purely reactive and stateless 
• … but ideal to use stateless design and let cloud optimise state

11COSC349 Lecture 19, 2020


