Function as a Service /
Serverless Computing

COSC349—Cloud Computing Architecture
David Eyers

Learning objectives

* Explain what Function as a Service (Faas) is

* Contrast FaaS with laasS / PaasS / SaaS

* Indicate why FaaS might suit Internet of Things apps.

* Understand why Faas systems are stateless & reactive
* Sketch how Faas is supporting rise of edge computing

Function as a Service (FaaS)

* Faas is also known as serverless computing

* l.e., trend away from needing to considering servers at all

* Tenant’s focus Is iInstead just providing functions 1o execute
* c.f., lambda functions: anonymous functions passed fo functions

* Variety of popular languages available for writing functions

* FaasS Is embodies data flow programming

* |.e., fransformations to data happen when data is ready
* e.d., change to a spreadsheet cell—also data flow programming

* Note that the functions themselves are prolbably procedural

Distributed stream processing systems

* Contrast DBs with distributed stream processing systems
* Databases run gueries when instructed to do so

* Stream processing systems define a data flow graph

* Sources—fuples are emitted from them
* Operators—nodes that transtorm n iNnput streams o M outputs
* Sinks—tuples are output or stored

« Computing is friggered by new tuples appearing

* Many high-quality, scale-out, open source DSPSs:
* Apache Storm, Apache Spark Streaming, Apache Flink, ...

COSC349 Lecture 19, 2020 4

Event-driven programming

* In laas, VM is yours, so your code is always running

* In Paas, still usually a sense that your code is active
* PaaS auto-scales the server instances that run your code

* In Faas, your code operates in a reactive style

* Reactive programming typically relies on callbacks
* Some sort of shared event dispatcher issues callbacks
* You do not heed to be aware of server instances at all

* Of course servers still need to run your code...
* FaaS may have wide variance in function execution latency

AWS Lambda—public FaaS cloud

* AWS Lambda (2014) was first successful Faas, then

* Google Cloud Functions, Microsoft Azure Functions,
* Apache OpenWhisk (open source—initiated by IBM), ...

* AWS Lamlbda provides core support for many PLs:

* Python, Java, Node.Js, Go, Ruby, and C# (.Nef core)
* Other effects can use call-outs to Linux executables

* AiIms for millisecond startup latency
* Caching will likely mean significant speed-up from recent use

COSC349 Lecture 19, 2020

Pricing for AWS Lambda

* Pricing based on number of requests and their duration

* Request cost is $0.20 per million per month
* ... but the first million requests per month are free

* Duration cost is $0.0000166667 per GB-second

* So Involves both time and allocated memory you've chosen
* ... but the first 400,000 GB-seconds per month are free

* Memory allocation can be as low as 128 MB
* (So the free tier will go a long way, for small-scale applications)

AWS Lambda event sources

* Typical use cases for Faas include reactions such as:

* Objects are updated or added to an S3 bucket
* Updates are made to an Amazon database platform
* Sensor readings arrive to the cloud (we will discuss loT soon...)

* Only want to pay when your code is running:

* Avold paying for overheads like time to start/stop VM
* Avold paying to keep VMs In a ready state to handle requests

* Lambda well suits app-specific interlinking of AWS 1ools

Internet of Things (10T)

* l[oT embodies ambition of all devices being networked
* Devices Including toasters, streetlights, cars, wireless sensors,...
* (Many loT devices have low-quality security engineering)

* For sensor networks, want 1o offload data processing
* e.g., extend lifetime of battery-powered devices

* Often sensor data will be disseminated periodically

* Faas faclilitates app-specitic data checks and fransformations
* Provides a reliable endpoint for real-world devices to interact with

Edge computing

* Cloud computing suits many types of jobs

* However some data processing needs distribution
* (Maintain historical central/decentralised computing oscillation?)

* Edge computing is half-way between cloud and loT
* Often full-size computing devices, widely distributed
* ... but not at cluster scale (so not scale-out edge computing)

* CloudFront CDN can run AWS Lambda functions

* e.g., personadlise web content within any AWS Region’s DC

Stateless functions

* Offen a requirement that transformers are stateless

* Easy to run in parallel when invocations are independent
* Greatly helps scaling up applications

* Fault folerance: can re-run failed functions safety
* Also can run a set of functions to check for consistent answer
* May Increase function’s Input to compensate for statelessness

* Likely to require reengineering of legacy apps
* Most apps’ functions are not purely reactive and stateless
* ... butideal to use stateless design and let cloud optimise state

