

Cloud Middleware and MBaaS

COSC349—Cloud Computing Architecture

David Eyers

Learning objectives

- Outline the usefulness of middleware for developing applications that use cloud computing
- Contrast Apple CloudKit and Google Firebase in terms of relationships between provider, tenants and clients
- Describe typical MBaaS services
 - MBaaS—Mobile Back-end as a Service (seen in XaaS lecture)
- Sketch pricing approach of CloudKit versus Firebase

Middleware for cloud computing

- Middleware: OS-like functionality for apps beyond OS
 - e.g., OS accesses local files; middleware accesses cloud files
 - (assumption that OS isn't cloud aware is less realistic over time...)
 - Middleware often eases translation between platforms
 - Typically use middleware via a software library
 - ... contrast this with programming directly against cloud APIs
- Focus on two (Mobile) Backend as a Service offerings:
 - Apple's CloudKit (2014)—iCloud launched 2011
 - Google's Firebase (~2014)—Firebase launched in 2011

MBaaS versus typical AWS services

- Amazon has a relationship with the tenant
 - ... but does not explicitly have any link with tenants' clients
- Contrast MBaaS from Apple, Google, etc.:
 - company has relationship with the tenant (e.g., iOS app dev.)
 - company also has a relationship with the client
- Differences between Apple, Google, etc.
 - Apple has a financial link by selling kit to tenants' clients
 - Google interests in cross-service linkage—across search, etc.
 - (Amazon doesn't seem to leverage Amazon+AWS client links)

Apple CloudKit

- From XaaS lecture: it's Backend as a Service (BaaS)
- Apple has always maintained deep vertical integration
 - Hardware; OS; even programming languages and compilers
 - PL: Objective-C, then Swift; Apple strongly supports LLVM compilers
- Application developer can rely on CloudKit for:
 - Databases—Apple provides public and private instance
 - Authentication—Apple provides authenticated users
 - File storage—Apple allows use of iCloud Drive

COSC349 Lecture 20, 2020

FYI: CloudKit code example (Swift)

```
private func fetchItems() {
    let privateDatabase = CKContainer.default().privateCloudDatabase
   // Initialise Query
    let reference = CKReference(recordID: list.recordID, action: .deleteSelf)
    let query = CKQuery(recordType: RecordTypeItems,
                         predicate: NSPredicate(format: "list == %@", reference))
    // Configure Query
    query.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)]
   // Perform Query
    privateDatabase.perform(query, inZoneWith: nil) { (records, error) -> Void in
        DispatchQueue.main.sync {
            self.processResponseForQuery(records, error: error)
```

Common CloudKit database objects

- CKContainer—security sandbox for applications
- CKDatabase—a key-value store with constraint support
 - private: sensitive user information (see code on previous slide)
 - public: shared data
- CKReference—like constraints in relational DB model
- CKRecord—key-value pair inside your database
 - CKRecordZone—app has zone; can define others
 - CKRecordIdentifier—unique label of record
- Note the use of asynchronous data retrieval

CloudKit notifications and CloudKit JS

- CloudKit facilitates push notifications to clients
 - (Complete code, such as asking user permission for notifications, omitted)

- History: Apple Push Notification service first on iOS 3 in 2009
- CloudKit JS: can interact with iCloud using web app.
 - Still need to set up everything in Apple Xcode
 - Get API token and register application

CloudKit backend for databases, etc.

- Not entirely clear what Apple iCloud backend uses
 - e.g., see Cassandra, MongoDB, HBase, and Couchbase job ads
 - Good evidence different products used for different tasks
- Apple's Apache Cassandra use in 2014:
 - More than 75,000 servers; >10PB data; >1M ops/sec
 - Timing implies mostly Apple iCloud use, not use by CloudKit
 - (Cassanda project was open-sourced by Facebook in 2008)
- FoundationDB bought by Apple; re-open-sourced 2018
 - Compared to Cassandra: supports ACID transactions; in memory

CloudKit pricing

- Free tier: 10GB assets; 100MB DB; 2GB transfer; 40 req/s
 - User data and docs not included in app's usage (it's in iCloud)
- Free tier scales based on active users (iOS \$ spenders)
 - Per user: 250MB assets; 2.5MB DB; 50MB transfer; 0.0001req/s
 - 500K users? 125TB assets; 1.2TB DB; 25TB transfer; 50 req/s
 - 4M users? 1PB assets; 10TB DB; 200TB transfer; 400 req/s
 - Resource ceiling at 4M users: more users, just get smaller slice
- Overage charges
 - Assets \$0.03/GB; DB \$3.00/GB; \$0.10/GB transfer; \$100 10req/s

Google's Firebase MBaaS

- Google Cloud started more 'AWS' than 'CloudKit'
 - Google acquired Firebase in 2014—it had started in 2011;
 - has merged aspects of Firebase back-end into Google Cloud
- Firebase unifies MBaaS: iOS, Android, web, Unity, C++...
 - Provides file storage, databases, authentication, messaging, testing, profiling, debugging, and many more
 - (Actually, multiple types of DB: Realtime DB and Firestore...)
 - Firebase launched to support machine-to-machine Realtime DB
 - Subsequent analytics have presumably led to redesign...

Google's Firebase has three pricing types

- Spark—free, and Blaze—pay as you go
 - Blaze includes Spark's free quota (RIP Flame fixed price plan)

	Free	PAYG
Phone auth	10k/mth	\$0.06/check
Firestore data	1GiB	\$0.18/GiB
Functions invocations	125K/mth	\$0.40/million
Realtime DB connections	100	200K/database
Storage (data)	5GB	\$0.026/GB
Storage (downloads)	1GB/day	\$0.12/GB

Firebase services—application building

- Typical services for building applications
 - Cloud Firestore—NoSQL DB
 - Cloud Functions—like AWS Lambda
 - Authentication—passwords + OAuth
 - Hosting—CDN for web content
 - Cloud Storage—object storage like Amazon S3
 - Realtime Database—original low-latency state synchroniser
 - Cloud messaging—push notifications
 - Replaced Google Cloud Messaging for push to Android, with service that does push to iOS, Android and web

Firebase services—QC and analytics

- Quality Control (QC) for applications
 - Crashlytics—aggregates crash reporting; realtime notification
 - Performance monitoring—network and device tracing
 - Test lab—run code on real+virtual devices; CI; auto-testing
- Services linked to analytics
 - Google Analytics—like for websites, study your customers
 - Predictions—automatically group your users for manipulation
 - Remote Config—dynamic customisation: language; specials...
 - Dynamic Links—from mobile website to deep link in app

Firebase beta offerings

- A/B testing—modify your app and measure effect
 - Allows for incremental development of features
- In-app messaging—manipulate users while using app.
 - Messages based on model of user behaviour and interests
- Firebase ML—machine learning toolkit
 - Provides for on-device and in-cloud APIs across platforms
 - Supports upload of custom TensorFlow Lite models
 - TensorFlow is another data flow system, for maths-heavy computing
 - TensorFlow Lite uses GPU inference engine running on smartphones