
Exam, message queues,
notifications,

& step functions
COSC349—Cloud Computing Architecture

David Eyers

COSC349 Exam

• There is now a past paper available… but only the one
• Three hours; 100 marks across 8 questions; answer all questions

• The 8 questions relate to different topic areas
• Expect some alignment with the lecture structure
• Each question has parts, and potentially subparts:
• lots of smaller questions, no “Cloud computing. Explain. (20 marks)”

• Exam is on lecture material, not labs, or assignments

2COSC349 Lecture 23, 2020

Answering COSC349 exam questions

• Marking approach predictable from marks allocated:
• “Describe three reasons for … (6)”—2 marks for each reason

• Structuring answers as bullet points rather than prose is
fine provided that the linking to the question is clear

• Suggest planning to do multiple passes
• Answer questions you’re comfortable with first
• Some questions are intended to be more challenging

3COSC349 Lecture 23, 2020

Studying for COSC349

• Ensure you can answer the questions in the learning
objectives presented at the start of each lecture
• This should help highlight the key, core concepts
• Some of the more detailed lecture material is provided for

completeness, to provide context and for those interested
• (… but some of it is very technically detailed)

• Come to tutorials if you're unsure about your answers
to given learning objectives
• I’m very keen to help, but I can’t form your answers for you

4COSC349 Lecture 23, 2020

Learning objectives

• Understand that cloud applications will usually be built
from many different software components & services

• Describe the role in building cloud applications of:
• Notification services, e.g., Amazon’s Simple Notification Service
• Message queues, e.g., Amazon’s Simple Queueing Service

• Illustrate how Amazon Step Functions provide support
for distributed transactions in cloud applications

5COSC349 Lecture 23, 2020

Cloud plumbing

• Ideally software components are specialised
• Facilitates effective separation of concerns
• Allows for broadest possible reuse potential
• Scalability and elasticity can focus on specific functionality

• But applications need interconnected components
• Want to avoid hard-coding component interactions
• Interconnection often good monitoring, logging, & audit point
• Often can use discrete messages rather than data streams

6COSC349 Lecture 23, 2020

Component interaction queuing examples

•Workloads we’ve seen: synchronous, 1–1 interactions
• Web + DB—web request initiates DB query; render DB response
• S3 + Lambda—react when a particular bucket is changed

• May have 1–n, e.g., allocate jobs to a pool of workers

• May have disconnected targets, e.g., onsite database
• e.g., ensure that retry can occur, but is not sender's problem
• Even within cloud services, batching can boost performance

• Both of the above two points are types of decoupling
7COSC349 Lecture 23, 2020

Message queues and notification services

• Notification services and message queues factor out
interconnection needs between software components

• Notification services—e.g., publish/subscribe paradigm
• Publishers publish messages on particular topics
• Subscribers subscribe to those topics

• Message queues typically focused on reliable delivery
• Temporary storage of messages is the focus

8COSC349 Lecture 23, 2020

Message queues: key features

• Common case functionality of message queues is easy
• Just a buffer between producer(s) and consumer(s)
• … but buffer needs persistency; high throughput; low latency
• (These requirements usually trade off against each other.)

• Message queues often provide further functionality
• Asynchronous delivery—receiver need not be online
• Producer does not have to consider receiver’s status

• Reliable delivery—retry after failures
• Dead letter queue (DLQ)—messages go here after max. retries

9COSC349 Lecture 23, 2020

Amazon Simple Queueing Service (SQS)

• SQS—decouples two applications
• Producer pushes messages into a queue
• Consumer pulls messages from the queue
• Push/pull is analogous to pipes in Unix / WinNT OS kernels
• Messages are stored for up to 14 days

• Two queue types: (for 64KB ‘chunks’)
• Standard—may: deliver duplicates; out of order ($0.40/mil)
• FIFO—no duplicates; first-in-first-out order; slower ($0.50/mil)

10COSC349 Lecture 23, 2020

Amazon Simple Notification Service (SNS)

• SNS is a topic-based publish-subscribe system
• Has multiple subscriber types:
• High-speed: SQS; HTTP(S) POST to web-hooks; AWS Lambda
• Mobile: email; SMS; iOS+Android push notifications (see labs)

• Fan out to multiple interested subscribers

• Subscribers can set filters on notifications
• e.g., prefix matching on names; range matching on attributes
• (SNS can then pass filtering close to source, which is optimal)
• Topics can be set to deliver raw data: payload without JSON

11COSC349 Lecture 23, 2020

Amazon Step Functions

•What if you want to use a workflow with time delays?
• e.g., notify owner one month after they upload an S3 object
• SQS / SNS can’t help directly: don’t support app-level timing
• Can’t usefully use Lambda, as function would run for a month!

• Amazon Step Functions handle this type of use case:
• Track states of execution—only charged for transitions
• Steps in parallel; serial; conditional; relative/absolute delay,…
• Easy Lambda support; but don’t work in AWS Edu. Classrooms

12COSC349 Lecture 23, 2020

Distributed transactions

• Typical monolithic application design is DB-backed
• Databases usefully support transactions
• However databases are also a common bottleneck in designs

• Saga pattern is common micro-services alternative
• (Actually published in 1987 by Garcia-Molina and Salem)
• Saga is sequence of tasks that are in “transaction”
• Each task must have a compensating action—an “undo”
• These must be idempotent: saga rewind might need rerunning

• Amazon Step Functions can orchestrate saga implementation

13COSC349 Lecture 23, 2020

