
Distributed consensus
and integrity checking
COSC349—Cloud Computing Architecture

David Eyers

Learning objectives

• Explain that scale-out design must avoid contention
• Application workflow must be analysed to identify contention

• Describe how atomic broadcast effects coordination
• Must allow coordination to run on multiple servers that can fail
• Tools like Apache ZooKeeper provide app. coordination needs
• … but this work is often done for you by cloud providers’ services

• Sketch how Merkle trees allow data integrity checking
• Specifically that they are more efficient than sets of hashes

2COSC349 Lecture 24, 2020

Scale-out software design

• Consider design for a service issuing concert tickets
• Assume that a flash crowd of 100,000 customers arrives
• Ticket count and ticket allocations need to be consistent

• Traditional relational DB? Many contending transactions
• Locking will serialise customers’ requests (likely causing timeouts)

• Try to create designs that avoid contention:
• Allocate batches of tickets to servers; or hash customers to seats
• Note: increment & decrement of ticket count is commutative

3COSC349 Lecture 24, 2020

Building scale-out systems

• Need to characterise parts of workflow carefully: e.g.,
• Embarrassingly parallel—coordination of workers not required
• Partitionable—workers can be coordinated within partitions
• Tightly coupled—whole system needs coordination

• Scale typically requires highly concurrent operation
• Can’t require serialisation, but usually must be serialisable
• Systems requiring coordination must handle machine failures
• … also must operate without software race conditions

4COSC349 Lecture 24, 2020

Challenges / solutions for scale-out systems

• Computers used in data centres are unreliable devices
• Electronic malfunctions: e.g., cosmic radiation bit-flips in RAM
• Software malfunctions: e.g., operating system crashes
• Scaling out over multiple machines: more likely to see failures
• Also, assessment of failure might be wrong & device recovers

• Use quorum over set of machines: reduce risk of failures
• A set of machines carries out computation redundantly
• Determine that a majority agree before proceeding
• Expensive to maintain redundancy, but its value is high

5COSC349 Lecture 24, 2020

Core tool for reliability—atomic broadcast

• Atomic broadcast—all correct instances receive same
set of messages in the same order (AKA total order)
• Total order does not imply order matches order messages sent
• (Partial order just provides a set of “X is before Y” clauses)

• Equivalent to distributed consensus: agree on message order

• General async. distributed consensus with faulty node?
• Proven to be impossible to achieve—Fischer, Lynch, & Paterson
• … but can make practical systems if requirements are relaxed
• Are synchronous solutions: the ‘Byzantine Generals’ problem

6COSC349 Lecture 24, 2020

Apache ZooKeeper

• ZooKeeper gives safe, high-performance coordination
• Although it is ‘just’ a hierarchical key-value store technically
• Central is ZooKeeper Atomic Broadcast (ZAB) protocol
• Set of ZK servers maintain in-memory database of all state
• Snapshots written to persistent storage for faster recovery
• All ZK servers have to know about all other ZK servers

• ZooKeeper was developed as part of Hadoop
• Hadoop needed to coordinate distributed work being done
• Early developments ran into subtle coordination failures

7COSC349 Lecture 24, 2020

ZooKeeper’s guarantees and simple API

• Sequential consistency—clients’ updates are in order

• Atomicity—clients’ updates apply entirely or not at all

• Single view—all servers provide same view of system
• i.e., clients can connect to any ZooKeeper server

• Reliable—updates persist once committed

• Timely—all clients’ views up to date within time bound

• Very simple API: create node; delete node; node
exists?; get data; set data; get children; sync

8COSC349 Lecture 24, 2020

Establishing integrity of application’s data

• Failure-free system? Components—thus data—is correct
• However this also means no protection from malicious agents

• Consider verifying integrity of files for malicious changes
• Not sufficiently safe or precise to look at modification times
• Need to look at the contents of the data in the files
• Typical approach: summarise files with a secure hash code

• Special case: checking append-only log of transactions
• Related to distributed ledger technology (DLT), e.g., blockchain

9COSC349 Lecture 24, 2020

Merkle trees: a useful type of hash tree

• Consider data divided up into fixed-sized blocks

• Rather than hashing each block and sending hash list:
• Hash data blocks (leaves), then hash concatenated hashes
• Binary tree proceeds up to the root hash—the handle for data

• Can quickly check blocks within individual branches
• Do not need to have whole tree: can reconstruct branch hash
• Then can check if new block is consistent with the root hash

10COSC349 Lecture 24, 2020

Merkle trees are widely used

• Can verify BitTorrent downloads—the root hash is file ID
• (currently most torrents are actually a flat list of block hashes)
• any malicious block manipulations can be easily detected
• retry such block downloads using another node

• Check integrity of git repositories—track modifications
• (FYI: some git data is not protected, e.g., branch pointers)

• Verify state of data in filesystems, e.g., BTRFS and ZFS

• Also used in bitcoin’s blockchain system—light clients

•Within NoSQL DBs: cheaply locate data inconsistencies
11COSC349 Lecture 24, 2020

Checking consistency of distributed ledgers

• Ledger tracks state of system—e.g., account balances
• Ledgers are typically append-only data structures
• Immutable history is useful widely, such as auditing DB changes…

• State of ledger can be checked effectively using Merkle trees
• Newest transaction block checked against hash tree and root hash

• Distributed ledgers (DLT) have multiple copies of ledger
• Can quickly & efficiently check all ledgers on the same page
• Most DLTs rely on peer-to-peer network: avoid central servers
• (Large download when starting to mine bitcoins is the ledger)

12COSC349 Lecture 24, 2020

FYI: Blockchain: types and cloud role

• Public, permissionless systems underly bitcoin
• No central control over set of participants
• Need a consensus system such as proof-of-work:
• compete to solve a hash-puzzle: winner is randomised and verifiable

• Private, permissioned systems more typical in enterprise
• Understand set of participants and who is allowed to act
• Can facilitate BFT consensus which is stricter than ZooKeeper

• Can use blockchain to check cloud applications’ state
• Cloud providers also happily sell (distributed) ledger systems

13COSC349 Lecture 24, 2020

Amazon Quantum Ledger Database: QLDB

• QLDB: an append-only DB with verified transaction log
• Hash records (SHA-256) provided over transaction history
• Not a DLT: QLDB is centralised infrastructure; one data owner
• API is server-agnostic: Amazon will scale server-side as needed

• Pricing: based on I/O against data, and data storage
• I/O: writes—$0.70/mil; reads—$0.136/mil
• Storage: journal—$0.03/GB/month; index—$0.25/GB/month

• PartiQL allows querying of transaction records
• PartiQL extends SQL to handle semi-structured & nested data

14COSC349 Lecture 24, 2020

