
Container orchestration
and Kubernetes

COSC349—Cloud Computing Architecture
David Eyers

Learning objectives

• Explain required container orchestration functionality
• Kubernetes is the dominant tool, so a good point of reference

• Describe etcd’s role in managing container clusters
• Its history within Container Linux (was CoreOS) gives context

• Appreciate rapid change in features of cloud tools
• Also that tool functionality may partially or completely overlap

2COSC349 Lecture 25, 2020

Container orchestration

• Containers are useful, but need to be managed

• Numerous container orchestration systems emerged:
• Docker swarm—(now) built-in simple Docker cluster manager
• Docker compose—means to specify multi-container “stacks”
• Kubernetes—focus of today’s lecture…
• Apache Mesos—also supports non-containerised workloads
• OpenShift—as discussed previously

• Google has used containers in production for years

• First though, we examine an OS to host containers…
3COSC349 Lecture 25, 2020

RHEL / Fedora CoreOS

• Previously Container Linux, previously previously CoreOS
• Linux distribution intended only to run containers
• No software package manager: /usr is read-only

• Can be started using network boot
• Security updates are applied monolithically
• Can schedule rolling reboot of cluster machines

• Originally ran Docker containers, subsequently rkt, etc.
• Previously used as a Docker layer in CS lab environment

• Can’t run container host cluster without coordination
• … so developed and provides etcd for coordination

4COSC349 Lecture 25, 2020

Kubernetes

• Project emerged from Google in 2014; v1.0 released 2015
• Related to Borg—Google’s (secret) internal container scheduler
• K8s is implemented in Go, in contrast to Borg’s C++

• A number of key types of objects
• Pods—tightly coupled set of containers; smallest unit of scheduling
• Services—set of pods grouped behind load balancer
• Volumes—persistent storage; can share between containers
• Namespaces—e.g., same device names in dev, test & production
• ConfigMaps and Secrets—runtime configuration parameters

• Kubernetes works with many container technologies
5COSC349 Lecture 25, 2020

Kubernetes pods

• Pods are the basic unit of application execution
• Common case is to have one container in a pod
• Multiple containers in a pod tightly couple them
• Should be used when those containers share local resources

• Pods are assigned an IP address, for networking
• All containers within the pod share that address and its ports

• Pods provide app. storage (volumes) to containers

• Pods usually created by controllers, and not directly
• e.g., controller types: Deployment, StatefulSet, DaemonSet

6COSC349 Lecture 25, 2020

Stateless versus stateful applications

• Stateless applications scale easily: just start more pods
• e.g., web servers presenting read-only workloads

• Stateful apps are more difficult, e.g.:
• Databases having primary and secondary instances
• Distributed components that spread state over instances

• Kubernetes controllers select stateless / stateful
• e.g., storage is handled differently for stateful applications

• volume can be unique for a given instance of a pod in a set
• otherwise volumes are shared across all instances of pods in a set

7COSC349 Lecture 25, 2020

Architecture of Kubernetes

• Master node is logically centralised control point
• API server—allows Kubernetes cluster to be controlled
• controller manager—checks replication; nodes are up
• scheduler—allocates pods waiting to run to nodes
• etcd—consistent repository of configuration information

• Kubernetes Nodes run pods, but also:
• Kube-Proxy—provides network services; leveraging OS facilities
• cAdvisor—provides statistics about container resource use
• Kubelet—checks on health of containers within a pod

8COSC349 Lecture 25, 2020

Kubernetes Scheduler

• Scheduling is a multi-factor optimisation problem
• Tradeoff between global (slow) & local (may not be optimal)

• K8s Scheduler is not global; uses multiple phases:
• P1: find nodes that can run pods without resourcing violations
• P2: score which plan appears to be best, choose best score

•Will try to place pods on nodes with available space…
• … otherwise force pods onto nodes & kill some existing pods
• Killed pods may be replicas not currently being used much

9COSC349 Lecture 25, 2020

etcd—consistent, distributed key-value DB

• etcd was developed to support CoreOS coordination:
• needed to reliably do rolling OS reboots without breaking apps

• Similar objective to Apache ZooKeeper, but…
• … uses the Raft consensus algorithm instead of Paxos
• inspired by Google Chubby—an internal database project

• Implemented in Go instead of Java, with API using HTTP+JSON
• Can operate with a smaller resource investment than ZKs

• Allows registration of watches on keys (and directories)
• Build applications that trigger reconfiguration on DB changes

10COSC349 Lecture 25, 2020

Kubernetes as a Service

• K8s can manage your containers, but how to set it up?
• IaaS needs for the VMs running master and the nodes

• Amazon offer a range of options:
• AWS Fargate provides a complete container service
• AWS EKS provides control plane; you set up K8s nodes on EC2
• Use EC2 to deploy all of the components for full control

• Cloud providers’ container services are very similar
• Can deploy containers onto clusters in multiple clouds
• Tools like Rancher provide for multi-K8s cluster management

11COSC349 Lecture 25, 2020

Terraform versus Rancher, Kubernetes, etc.

• Rancher can help deploy Kubernetes over bare metal
• Rancher also unifies monitoring & security management tools

• However, you may need specific infrastructure nodes
• e.g., configuring a GPGPU node on Amazon for deep learning
• Containers can use this hardware, but container managers?

• Terraform is a level below tools like Rancher, it:
• can effect deep IoC impacts—allows preview of its plans
• can thus easily provision at level of particular GPU instance
• … then pass control of software to a container manager

12COSC349 Lecture 25, 2020

Why it’s so hard to pick a “winner”

• Tools can manage each other—it’s all just software!

• All are churning rapidly in what’s provided, e.g.:
• Rancher’s original functionality replaced by Docker Swarm
• CoreOS Linux’s original fleet functionality replaced by K8s

•Which to use? Consider your and your team’s time
• Look to see whether a new tool can optimise your processes
• ... but only when taking into account the cost of transition

• Aim to have IoC and continuous integration pipelines
• All future tooling is likely to move in the direction of IoC

13COSC349 Lecture 25, 2020

