Memory ey
Processor \ayer

COSC 402

Advanced Computer Networks

About This Course

* Lectures
— Internetworking with TCP/IP
— Programming using Socket API

— Wireless sensor networks, Internet of Things, Cyber-physical
systems

— Other advanced networking topics
* 4G & 5G networks
« Datacenter networks
* Li-Fi networks & network-on-chips
* Mobile social networks
* Vehicular ad-hoc networks
* Software-defined networks
* Aims
— Sufficient background in advanced network theory
— Necessary skills in network programming
— Practice in creative thinking about computer networks

Teaching Team

 Lecturer and lab demonstrator

Dr Haibo Zhang
Email: haibo(@cs.otago.ac.nz
Phone: 479-8534
Office: 2.47 Owheo Building

Dr Yawen Chen

Email: yawen(@cs.otago.ac.nz
Phone: 479-5740

Office: 2.46 Owheo Building

Course details

* Lectures
— Thursday 11:00-12:50am

e Labs
— Thursday 14:00-16:00pm
— No labs 1n the first two weeks

* Textbook (recommended)

— Part I: Unix Network Programming, Vol. 1, The Sockets
Networking API (3rd ed),
W.R. Stevens, B. Fenner, A.M. Rudoff, Addison Wesley

— Part II & Part III: no particular recommended textbook.

Assessments

Internal assessment (40%) + Exam (60 %)

* Programming Assignments (20%)

— Assignment 1: implement a multi-user chat system
Assignment 2: implement a multi-hop routing scheme for
wireless sensor networks

The above assignment needs to be done in C. If you are not

familiar with it, please take the first two weeks to learn it.
* Project (20%)
« Exam (60%)

— 3 hours

Lecture Notes

* No hardcopy lecture handouts will be provided.

e Lecture slides will be available on the course

webpage approximately one week before the
corresponding lecture.

http://www.cs.otago.ac.nz/tele402/schedule.php

Lecture 1 Overview

* This Lecture
— Protocol design principles
— TCP and UDP
— Source: Chapter 2

* Next Lecture
— Sockets introduction
— Elementary TCP sockets
— TCP Client-Server example
— Source: Chapters 3,4, and 5

Network Protocols

* Why do we need network protocols?

Allow one to specify or understand communication without knowing the
details of the network hardware

* Problems that might arise during communication
— Hardware failure
— Network congestion
— Packet delay or loss
— Data corruption
— Data duplication or inverted arrivals

Network Protocols

* Is it possible to design a single protocol which handles
all problems occurred during data communication?

might be possible, but very difficult
* Layered design approach

— Not new

Computer system

Communication

Requirements

Software Engineering

Design
Code
Testing

Methods “howto’s” / Deployment

application software

tools
operating system

hardware process model

a “quality” focus

Open Systems Interconnection (OSI)

Application = Application
Presentation i3 =l Presentation
Session Ses<ion
Transport Transport

Netwvork Network REked Network Rislee Netvsork

Data Link DEICRA LGN < - -> SRl Data Link

Physical] Phvsical] Phvsical — Phvsical

- -

10

Open Systems Interconnection (OSI)

Application everything else

JESCENICEEON byte ordering, security
Session how to tie flows together

Transport how to send packets end-to-end
Network how to route packets
Data Link how to transmit frames

Physical how to transmit bits

Layering: modular approach to network functionality

TCP/IP Model

Application = Application

Transport Transport

Internet € --> Internet € --> Internet € -=> Interrnet

Host-to- Host-to- Host-to- Host-to-

el SR B SR B)
net\woi n NS TWUOI N NS TWUOI N llctv'/Ork

The Protocol Layering Principle

* FEach layer is able to perform two opposite tasks for bidirectional
communication, €.g. send and receive, encrypt and decrypt.

* Two objects under each layer are identical, 1.e., layer n at the
destination receives exactly the same object sent by layer n at the
source.

12

Multiplexing/Demultiplexing

Why are multiplexing and demultiplexing necessary?

- N ETEL facebook

N\~ — ﬂ\\i? —>

- SMTP 1

The Hourglass Model Interoperability

Ethernet

|_Radio || Coaxial Jf Fiber _|HTwisted Pair

13

Multiplexing/Demultiplexing

Occurs at multiple layers

« TCP
e IP

Each header includes some fields
used to 1dentify the next layer

* Filled in by the sender

* Used by the receiver

b

1

T 1

\multiplexer/ /demultiplexer\

!

IP

1

IP

VER HLEN Service Total length
4 bits 4 bits 8 bits 16 bits
Identification Flags | Fragmentation offset
16 bits 3 bits 13 bits
Time to live Protocol Header checksum
8 bits 8 bits 16 bits

Source IP address

Destination IP address

Option

Protocol Layering: Pros and Cons

* Pros

— Modularity, simplicity, interoperability, robustness, security,
cost effective

e Cons

— Complexity, process time, memory usage, prevention from
optimization

The TCP/IP Protocol Suit
(The Internet Protocol Suite)

Example: Client and Server (1)

* Simple model

— One server, multiple clients

client

link

client

€

protocol

>

server

client

server

client

7

* How to make applications robust?

Example: Client and Server (2)

 [Local Area Network (LAN) Scenario

user Web e application protocol Web
process client ™ server
s i ' I ¢
!
TCP !la----- L s LN »{! TCP
protocol stack : :
within kernel | I
I vl 2t et JRISIRGOL oo SO
- | |
! |
Ethernet ! Ethernet protocol | Ethernet
. - — - — —— — - - | .
driver | | driver
| |
| |

application layer

transport layer

network layer

datalink layer

“Ethernet

Figure 1.3 Client and server on the same Ethernet communicating using TCP.

Example: Client and Server (3)

* Wide Area Network (WAN) Scenario

client
application

host

with

TCP /TP
LAN
=
router
WAN

router

N

server
application

host
with
TCP/IP

LAN

router
router router router

Figure 1.4 Client and server on different LANs connected through a WAN.

How to Develop the Program?

* Socket Programming
* What is a socket?

Without the telephone network, each endpoint of a telephone line is nothing more than a plastic box.

— Sockets represent endpoints in a line of communication.
— A socket 1s a software component characterized by a unique
combination of
* Local socket address: local IP address and port number

* Remote socket address: only for TCP sockets
e Protocol: TCP, UDP

Socket Programming

192.168.100.2 | 192.168.100.1

stdin i
. stdin

socket socket

port server

client _
3333 ¥inetd arogram

program

$tdout l T ¢Std°”t
I

* Socket Address: the combination of an IP address and a port
number (a 16-bit unsigned integer, ranging from 0 to 65535).

* Socket API: an application programming interface, usually
provided by the operating system.

#includ "unp.h” . . .
Thete P A Simple TCP Daytime Client
int
main(int argc, char **argv)
{

nt sockfd, n;

struct sockaddr_in6 servaddr;

char recvline[MAXLINE + 1];

if (argc 1=2) Create a TCP socket (socket)]

err_quit("usage: a.out <IPaddress>");

if ((sockfd = socket(AF_INET6, SOCK_STREAM, 0)) <0)

err_sys("socket error");

bzero(&servaddr, sizeof(servaddr));
servaddr.sin6_family = AF_INET6;

servaddr.sin6é_port = htons(13);/* daytime server */

A

- Specify server’s IP address and
port

if (inet_pton(AF_INET6, argv[1], &servaddr.sin6_addr) <= 0)

err_quit("inet_pton error for %s", argv[1]);

if (connect(sockfd, (SA *) &servaddr, sizeof(servaddr)) < 0)

err_sys("connect error");

recvline[n] = 0; /* null terminate */
if (fputs(recvline, stdout) == EOF)
err_sys("fputs error");

}

while ((n = read(sockfd, recvline, MAXLINE)) > 0) {

[Connect to the server (connect)]

" Send request or receive reply

(send & recv)

if (n<0) err_sys("read error");

exit(0); :

Terminate program (close socket)]

22

#include"unp.h"
#include<time.h>

A Simple TCP Server

int main(int argc, char **argv)

intlistenfd, connfd;

struct sockaddr_inservaddr;
charbufff MAXLINE];

Create a TCP socket (socket)]
time_ tticks;

listenfd = Socket(AF_INET, SOCK_STREAM, 0);
bzero(&servaddr, sizeof(servaddr));

servaddr.sin_family= AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port= htons(13); /* daytime server */

-

|

Specify server’s IP address and

port

J

Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

% Bind socket with local port (Bind)

Listen(listenfd, LISTENQ);

<\J Convert the socket to listening socket (Listen)

|

for (;5){

connfd = Accept(listenfd, (SA *) NULL, NULL);"

% Accept client connection (Accept)]

ticks = time(NULL);

snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));

Write(conntd, buif, strien(buft)); "7 Receive or reply (send & recv) |

Close(connfd); , . .
; <[Terminate connection (Close)]

23

Discovering Details of Your Local Network

 To find out interfaces: netstat -ni
* To find out routing table: netstat -rn

* To find out details of an interface: ifconfig

* To discover hosts on a LAN: ping

TCP/IP vs OSI

- application
Application details
Presentation Application B 4

process
Session
sockets
XTI
Transport TCP UDP
L
Network IPv4, IPv6 kernel v
. Device communications
Datalink Dt details
; and
Physical Hardware
OSI model Internet protocol
suite

Figure 1.14 Layers in OSI model and Internet protocol suite.

TCP/IP Protocol Suite

IPv4 applications IPv6 applications
AF_INET AF_TINET6
sockaddr_in{} sockaddr_in6{}
- b - |
ECPp— m-— S trace- = 1 & 1 g 1 5 1 trace- o
dump routed Pars route 3 1215 PP PR route IS
- - —— — - —-———f - ———t—— = ——— > A 41X _ 4 API
1 I
TP unDpl
L ! l
ICMP
32-bit 128-bit ICMP
ICAE vl addresses addresses A v6
ARP,
RARP
BPF, data-
DLPI link

Figure 2.1 Overview of TCP/IP protocols.

26

TCP Segment

* A segment consists of a fixed 20- to 60-byte header, followed by
zero or more data bytes

20-60 bytes
Source port address Destination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgement number
32 bits
HLEN|Reserved g é IS) 1; i f Window size
4bits| 6bits |5 |k |H|TININ 16 bits
Checksum Urgent pointer
16 bits 16 bits

Options and Padding

27

Connection establishment

* Three-way

client

socket
connect (blocks)
(active open)

connect returns

handshake

W*
‘W
W’

Figure 2.2 TCP three-way handshake.

server

socket,bind, listen
accept (blocks)

accept returns
read (blocks)

TCP options

Each SYN message can carry TCP options.

* MSS option: Maximum Segment Size

— With this option the TCP sending the SYN announces the
maximum amount of data that it 1s willing to accept in each
TCP segment

* Window scale option

— The maximum window that either TCP can advertise to the
other TCP 1s 65535 (16 bits for window size)
* Timestamp option

— New option needed for high-speed connections to prevent
possible data corruption caused by lost packets that then
reappear. No worries for network programmers.

Connection termination

client server

close FIN mpm
(active close) > (passive close)
"///aiMj’l,//’ read returns 0
FIN N close
e e

Figure 2.3 Packets exchanged when a TCP connection is closed.

30

starting point

CLOSED

1
)
appl: passive open :

send: <nothing> :

recv: SYN

send: SYN, ACK
simultaneous open

SYN_SENT

active open

data transfer state '

appl: : close
send: :FIN

]
simultaneous close

recv: FIN
send: ACK 7&S:ING)

FIN_WAIT_1

I
ESTABLISHED} — — — — - = = -l CLOSE_WAIT :
1

LAST_ACK 3

appl: close
or timeout

recv: ACK

end: <nothing>

| I
I I
I I
I I |
I I 23 125 Ry 0 P03 fachd T
I . I passive close
: recv: | ACK 5 recv: | ACK :
I : > ; |
[send: | <nothing> g send: | <nothing>,
I I
I I
1 A |
I I
FIN_WAIT_2 TIME_WAIT
! - e send: ACK = I
L 2MSL timeout !
___________ atfiveclose: I3t Esi] TES T3
————w indicate normal transitions for client
———-» indicate normal transitionskfor server
appl: indicate state transitions taken when application issues operation
recv: indicate state transitions taken when segment received
send: indicate what is sent for this transition

Figure 2.4 TCP state transition diagram.

client

socket
connect (blocks)
(active open) SYN_SENT

ESTABLISHED
connect returns

<client forms request>

write
read (blocks)

read returns =

close
(active close) FIN_WAIT 1

FIN_WAIT_2

TIME_WAIT

SYN J, mss = 1460
1024

SYN K, ack J+1,mSS =
W;

data (request)

data (reply)

2k of request

ack of reply

W
4/”95}'&1’//
FINN

W

server

socket,bind, listen
LISTEN (passive open)
accept (blocks)

SYN_RCVD

ESTABLISHED
accept returns
read (blocks)

read returns
<server processes request>

write
read (blocks)

CLOSE_WAIT (passive close)
read returns 0

close

LAST_ACK

CLOSED

Figure 2.5 Packet exchange for TCP connection.

1. e l®: - e -

TIME_WAIT state
* Why need TIME_WAIT state?

— To implement TCP’s full-duplex connection termination
reliably

— To allow old duplicate segments to expire in the network

e The time to remain in this state 1s 2*MSL

— MSL is Maximum Segment Lifetime (the maximum amount
of time that any given IP datagram can live in an Internet)

— The recommended value for MSL 1s 2 minutes in RFC 1122,
though BSD used a value of 30 seconds

— So the time for TIME_WAIT state 1s between 1 and 4
minutes

Port numbers

Well-known ports
— 0-1024

— Controlled and assigned by IANA (Internet Assigned
Number Authority)

Registered ports
— 1024-49151

— Not controlled by IANA, but IANA registers and lists the
uses of these ports as a convenience to the community

Dynamic (or private) ports
— 49152-65535, also called ephemeral ports

Reserved (privileged) ports in Unix, 0-1024

Concurrent servers and port

* Socket pair

— A 4-tuple for a TCP connection, which uniquely i1dentifies
the TCP connection

— local IP address, local TCP port, foreign IP address, and
foreign TCP port

206.62.,226,35
198769, 1022 206.62.226.66

connection request to

| |

| |

l‘ t | |
s " 206.62.226.35, port21 |
|

| |
| |

|

|
» server :
|

{198%69::1:0-2.1500;

206.62.226:35.21)

|
|
|
|
|
| {*.21, *.*} — = listening socket
|

Figure 2.8 Connection request from client to server.

35

Concurrent servers and port (cont.)

206.62.226.35
198.69.10.2 206.62.226,66

client server

|
|
|
|
{19869 1L0:25 1500, :

fae. 210 % B ‘>listening socket
206.62.226.35.21)

fork

server
(child)

|
{206.62.226.35.21, — connected socket
198.69.10.2.15003 |

Figure 2.9 Concurrent server has child handle client.

36

Concurrent servers and port (cont.)

21065 624.:226 . 35
198.69 .40.2 206 .62.2726.66

server

{198 69..10.2 #1500,
20662 .226.35421}

N P

server
(childl)

{206:62.226435 .21,
198.69:.10.2,15004}

client2

{18862 . 10,2, 1601,
206 :62,226.235.,21]

server
(child2)

{206.62.226.35.21;
198.69:.10.2, 1504}

IL> listening socket

I
|
[
Eork
|

— 1 = connected socket

» connected socket

Figure 2.10 Second client connection with same server.

37

TCP Flow Control

* Receiving side of a TCP connection has a receive butfer.

#— RevWindow —f
777
data from / / / application
IP / —* process
7 / 77

¥ RevBuffer ————#

Sender won’t overflow receiver’s buffer by transmitting
too much and too fast.

— Receiver advertises spare room via the “Window Size” field in the header of TCP
segment.

— Sender keeps the unacknowledged data in case that retransmission is needed.

38

TCP Congestion Control

* Congestion: too many sources send too much data for
network to handle

shared output link buffers

 Manifestations:
— Lost packets (buffer overflow at routers)
— Long delay (queuing in router buffers)

39

TCP Congestion Control

* End-to-end control
— Congestion window at the sender

— Sender limits transmission rate:
LastByteSent — LastByteAcked <= Congestion Window

 Mechanisms
— AIMD
— Slow start
— Refinement

TCP AIMD

e Additive Increase

— Increase congestion window by 1 MSS every RTT in the absence of
loss

* Multiplicative Decrease
— Cut congestion window 1n half after loss event

congestion
window

24 Kbytes —

16 Kbytes —

8 Kbytes —

» time

TCP Slow Start

When connection begins, congestion
window is set to 1 MSS.

Double the congestion window every
RTT if there 1s no loss event.

Initial rate 1s slow but ramps up
exponentially fast.

@Hos’r A Host B@

!

oNe segment

%’

ur segments

time

42

Refinement

* After 3 duplicated ACKSs

— Congestion window is cut in half

— Window then grows linearly

e After timeout event

— Congestion window is reset to 1 MSS
— Slow start

— Additive increase

cwnd

Threshold=20 3dupACKs

Timeout

Threshold=16

Threshoidle

v

Fast TCP

* Wei et al. Fast TCP: motivation, architecture, algorithms,
performance, IEEE/ACM Transactions on Networking, 2006.

— Use queueing delay as a congestion measure

, {2 i - <baseRTT N)}
W o INIn < 4w, — Y)W T Y W
RTT

* baseRTT: the minimum RTT observed
e « :a constant incremental factor

Summary

The layered design approach for network protocols

TCP connection setup and termination

— Transition between different states
— TIME_WAIT state

Port numbers & socket
TCP flow control and congestion control

