
COSC 402 

Advanced Computer Networks 



About This Course 
•  Lectures 

–  Internetworking with TCP/IP 
–  Programming using Socket API 
–  Wireless sensor networks, Internet of Things, Cyber-physical 

systems 
–  Other advanced networking topics 

•  4G & 5G networks 
•  Datacenter networks 
•  Li-Fi networks  & network-on-chips 
•  Mobile social networks 
•  Vehicular ad-hoc networks 
•  Software-defined networks 

•  Aims 
–  Sufficient background in advanced network theory 
–  Necessary skills in network programming 
–  Practice in creative thinking about computer networks 
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Teaching Team 
•  Lecturer and lab demonstrator 
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     Dr Haibo  Zhang 
     Email: haibo@cs.otago.ac.nz 
     Phone: 479-8534 
     Office: 2.47 Owheo Building 

     Dr Yawen Chen 
     Email: yawen@cs.otago.ac.nz 
     Phone: 479-5740 
     Office: 2.46 Owheo Building 



Course details 
•  Lectures 

–  Thursday 11:00-12:50am 

•  Labs  
–  Thursday 14:00-16:00pm 
–  No labs in the first two weeks 

•  Textbook (recommended) 
–  Part I:  Unix Network Programming, Vol. 1, The Sockets  

                       Networking API (3rd ed),  
                       W.R. Stevens, B. Fenner, A.M. Rudoff, Addison Wesley 

–  Part II & Part III: no particular recommended textbook.  
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Assessments 

•  Programming Assignments (20%) 
–  Assignment 1:  implement a multi-user chat system 

Assignment 2:  implement a multi-hop routing scheme for  
                             wireless sensor networks 
The above assignment needs to be done in C. If you are not    
   familiar with it, please take the first two weeks to learn it.   

•  Project (20%) 
•  Exam (60%) 

–  3 hours 
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Internal assessment (40%)  +  Exam (60%)



Lecture Notes 
•  No hardcopy lecture handouts will be provided. 

•  Lecture slides will be available on the course 
webpage approximately one week before the 
corresponding lecture. 

    http://www.cs.otago.ac.nz/tele402/schedule.php  
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Lecture 1  Overview
•  This Lecture
–  Protocol design principles
–  TCP and UDP
–  Source: Chapter 2

•  Next Lecture
–  Sockets introduction
–  Elementary TCP sockets
–  TCP Client-Server example
–  Source: Chapters 3, 4, and 5

7 



Network Protocols
•  Why do we need network protocols?

Allow one to specify or understand communication without knowing the  
                                   details of the network hardware

•  Problems that might arise during communication
–  Hardware failure 
–  Network congestion 
–  Packet delay or loss 
–  Data corruption 
–  Data duplication or inverted arrivals 
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Network Protocols
•  Is it possible to design a single protocol which handles 

all problems occurred during data communication?  
           might be possible,  but very difficult 
•  Layered design approach
–  Not new 
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Open Systems Interconnection (OSI)
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Open Systems Interconnection (OSI)
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Layering: modular approach to network functionality



Host-­‐to-­‐
network	
  

Host-­‐to-­‐
network	
  

TCP/IP Model 

12 

Host-­‐to-­‐
network	
  

Transport	
  

Internet	
  

Applica0on	
  

Host-­‐to-­‐
network	
  

Transport	
  

Internet	
  

Applica0on	
  

Internet	
   Internet	
  

The Protocol Layering Principle

•  Each layer is able to perform two opposite tasks for bidirectional 
communication, e.g. send and receive, encrypt and decrypt. 

•  Two objects under each layer are identical, i.e., layer n at the 
destination receives exactly the same object sent by layer n at the 
source.



Multiplexing/Demultiplexing
•  Why are multiplexing and demultiplexing necessary?
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The Hourglass Model Interoperability



Multiplexing/Demultiplexing
•  Occurs at multiple layers

•  TCP
•   IP

•  Each header includes some fields
     used to identify the next layer

•  Filled in by the sender

•  Used by the receiver
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VER
4 bits

HLEN
4 bits

Service
 8 bits

Total length
    16 bits

Identification
    16 bits

Time to live
    8 bits

Flags
3 bits

Fragmentation offset
       13 bits

  Protocol
    8 bits

  Header checksum
         16 bits

  Source IP address

  Destination IP address

  Option

multiplexer demultiplexer

IP IP



Protocol Layering: Pros and Cons
•  Pros 
–  Modularity, simplicity, interoperability, robustness, security, 

cost effective 

•  Cons
–  Complexity, process time, memory usage, prevention from 

optimization 
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   The TCP/IP Protocol Suit
 (The Internet Protocol Suite)



Example: Client and Server (1)
•  Simple model
– One server, multiple clients

•  How to make applications robust?
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Example: Client and Server (2)
•  Local Area Network (LAN) Scenario
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Example: Client and Server (3)
•  Wide Area Network (WAN) Scenario
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How to Develop the Program?
•  Socket Programming
•  What is a socket?

–  Sockets represent endpoints in a line of communication.
–  A socket is a software component characterized by a unique 

combination of 
•  Local socket address: local IP address and port number
•  Remote socket address: only for TCP sockets
•  Protocol:  TCP, UDP
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Without the telephone network, each endpoint of a telephone line is nothing more than a plastic box.



Socket Programming
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•  Socket Address: the combination of an IP address and a port 
number (a 16-bit unsigned integer, ranging from 0 to 65535).

•  Socket API: an application programming interface, usually 
provided by the operating system. 

 



A Simple TCP Daytime Client
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 #include        "unp.h”
 int
 main(int argc, char **argv)
 {
        int                                     sockfd, n;
        struct sockaddr_in6        servaddr;
        char                                  recvline[MAXLINE + 1];
        if (argc != 2)
                err_quit("usage: a.out <IPaddress>");
        if ( (sockfd = socket(AF_INET6, SOCK_STREAM, 0)) < 0)     err_sys("socket error");
        bzero(&servaddr, sizeof(servaddr));
        servaddr.sin6_family = AF_INET6;
        servaddr.sin6_port   = htons(13);/* daytime server */
        if (inet_pton(AF_INET6, argv[1], &servaddr.sin6_addr) <= 0)
               err_quit("inet_pton error for %s", argv[1]);
        if (connect(sockfd, (SA *) &servaddr, sizeof(servaddr)) < 0)      err_sys("connect error");
        while ( (n = read(sockfd, recvline, MAXLINE)) > 0) {
                recvline[n] = 0;        /* null terminate */
                if (fputs(recvline, stdout) == EOF)
                        err_sys("fputs error");
        }
        if (n < 0)      err_sys("read error");
        exit(0);
}

Create	
  a	
  TCP	
  socket	
  (socket)	
  

Specify server’s IP address and 
port 

Connect to the server (connect)

Send request or receive reply
(send & recv)

Terminate program (close socket) 



A Simple TCP Server
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#include"unp.h"
#include<time.h>
int main(int argc, char **argv)
{
 intlistenfd, connfd;
 struct sockaddr_inservaddr;
 charbuff[MAXLINE];
 time_tticks;
 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
       bzero(&servaddr, sizeof(servaddr));
 servaddr.sin_family= AF_INET;
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
 servaddr.sin_port= htons(13);   /* daytime server */

 Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));
 Listen(listenfd, LISTENQ);
 for ( ; ; ) {
   connfd = Accept(listenfd, (SA *) NULL, NULL);
   ticks = time(NULL);
   snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));
   Write(connfd, buff, strlen(buff));
   Close(connfd);
        }
}

Create	
  a	
  TCP	
  socket	
  (socket)	
  

Specify server’s IP address and 
port 

Bind socket with local port (Bind)

Receive or reply (send & recv)
Terminate connection (Close) 

Convert the socket to listening socket (Listen)

Accept client connection (Accept)



Discovering Details of Your Local Network
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•  To find out interfaces: netstat -ni 
•  To find out routing table: netstat -rn 
•  To find out details of an interface: ifconfig 
•  To discover hosts on a LAN: ping 



TCP/IP vs OSI
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TCP/IP Protocol Suite
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TCP Segment 
•  A segment consists of a fixed 20- to 60-byte header, followed by 

zero or more data bytes 
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      PayloadHeader

20-60 bytes

Destination port address
            16 bits

Sequence number 
        32 bits

  Acknowledgement number
               32 bits

    Window size 
          16 bits

Source port address
            16 bits

  HLEN
   4 bits

  Reserved
    6 bits

  
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

            Checksum
               16 bits

            Urgent pointer
               16 bits

            Options and Padding
              



Connection establishment
•  Three-way handshake
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TCP options
Each SYN message can carry TCP options.
•  MSS option: Maximum Segment Size
–  With this option the TCP sending the SYN announces the 

maximum amount of data that it is willing to accept in each 
TCP segment

•  Window scale option
–  The maximum window that either TCP can advertise to the 

other TCP is 65535 (16 bits for window size)
•  Timestamp option
–  New option needed for high-speed connections to prevent 

possible data corruption caused by lost packets that then 
reappear. No worries for network programmers.
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Connection termination

30 



TCP state transition
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Packet exchange
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TIME_WAIT state
•  Why need TIME_WAIT state?
–  To implement TCP’s full-duplex connection termination 

reliably
–  To allow old duplicate segments to expire in the network

•  The time to remain in this state is 2*MSL
–  MSL is Maximum Segment Lifetime (the maximum amount 

of time that any given IP datagram can live in an Internet)
–  The recommended value for MSL is 2 minutes in RFC 1122, 

though BSD used a value of 30 seconds
–  So the time for TIME_WAIT state is between 1 and 4 

minutes
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Port numbers
•  Well-known ports
–  0-1024
–  Controlled and assigned by IANA (Internet Assigned 

Number Authority)
•  Registered ports
–  1024-49151
–  Not controlled by IANA, but IANA registers and lists the 

uses of these ports as a convenience to the community
•  Dynamic (or private) ports
–  49152-65535, also called ephemeral ports

•  Reserved (privileged) ports in Unix, 0-1024
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Concurrent servers and port
•  Socket pair
–  A 4-tuple for a TCP connection, which uniquely identifies 

the TCP connection
–  local IP address, local TCP port, foreign IP address, and 

foreign TCP port
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Concurrent servers and port (cont.)
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Concurrent servers and port (cont.)
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TCP Flow Control
•  Receiving side of a TCP connection has a receive buffer.

–  Receiver advertises spare room via the “Window Size” field in the header of TCP  
segment. 

–  Sender keeps the unacknowledged data in case that retransmission is needed.
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Sender	
  won’t	
  overflow	
  receiver’s	
  buffer	
  by	
  transmiGng	
  
too	
  much	
  and	
  too	
  fast.	
  

2Mao W07

TCP Flow Control

� receive side of TCP 
connection has a receive 
buffer:

� speed-matching service: 
matching the send rate to the 
receiving app’s drain rate

app process may be slow at 
reading from buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control



TCP Congestion Control
•  Congestion: too many sources send too much data for 

network to handle

•  Manifestations:
–  Lost packets (buffer overflow at routers)
–  Long delay (queuing in router buffers)
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Causes/costs of congestion: 
scenario 1

� two senders, two 
receivers

� one router, infinite 
buffers 

� no retransmission

� large delays when 
congested

� maximum 
achievable 
throughput

unlimited shared 
output link buffers

Host A
λin : original data

Host B

λout

shared output link buffers



TCP Congestion Control
•  End-to-end control 

–  Congestion window at the sender 
–  Sender limits transmission rate:
           LastByteSent – LastByteAcked <= Congestion Window

•  Mechanisms
–  AIMD
–  Slow start
–  Refinement

•  Manifestations:
–  Lost packets (buffer overflow at routers)
–  Long delay (queuing in router buffers)
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TCP AIMD
•  Additive Increase

–  Increase congestion window by 1 MSS every RTT in the absence of 
loss

•  Multiplicative Decrease
–  Cut congestion window in half after loss event

41 
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TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease:
cut CongWin in half 
after loss event

additive increase: increase  
CongWin by 1 MSS every 
RTT in the absence of loss 
events: probing

Long-lived TCP connection



TCP Slow Start
•  When connection begins, congestion 

window is set to 1 MSS.
•  Double the congestion window every 

RTT if there is no loss event.
•  Initial rate is slow but ramps up 

exponentially fast.
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TCP Slow Start (more)

� When connection begins, 
increase rate exponentially 
until first loss event:

- double CongWin every 
RTT

- done by incrementing 
CongWin for every ACK 
received

� Summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments



Refinement
•  After 3 duplicated ACKs

–  Congestion window is cut in half
–  Window then grows linearly

•  After timeout event
–  Congestion window is reset to 1 MSS
–  Slow start 
–  Additive increase
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Threshold=16
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Fast TCP
•  Wei et al. Fast TCP: motivation, architecture, algorithms, 

performance, IEEE/ACM Transactions on Networking, 2006. 
–  Use queueing delay as a congestion measure

•  baseRTT: the minimum RTT observed
•      : a constant incremental factor
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WEI et al.: FAST TCP: MOTIVATION, ARCHITECTURE, ALGORITHMS, PERFORMANCE 1249

ally independent so that they can be designed separately and up-
graded asynchronously.

The data control component determines which packets to
transmit, window control determines how many packets to
transmit, and burstiness control determines when to transmit
these packets [24], [71]. These decisions are made based on
information provided by the estimation component.

An initial prototype that included some of these features was
demonstrated in November 2002 at the SuperComputing Con-
ference, and the experimental results were reported in [26]. In
the following, we explain in detail the design of the window
control component.

B. Window Control Algorithm

FAST reacts to both queueing delay and packet loss. Under
normal network conditions, FAST periodically updates the con-
gestion window based on the average RTT according to

where , is the minimum RTT observed so
far, and is a positive protocol parameter that determines the
total number of packets queued in routers in equilibrium along
the flow’s path. The window update period is 20 ms in our pro-
totype.

We now provide an analytical evaluation of FAST TCP. We
present a model of the window control algorithm for a network
of FAST flows. We show that, in equilibrium, the vectors of
source windows and link queueing delays are the unique so-
lutions of a pair of optimization problems (6)–(7). This com-
pletely characterizes the network equilibrium properties such as
throughput, fairness, and delay. We also present a preliminary
stability analysis.

We model a network as a set of resources with finite capaci-
ties , e.g., transmission links, processing units, memory, etc.,
to which we refer to as “links” in our model. The network is
shared by a set of unicast flows, identified by their sources. Let

denote the round-trip propagation delay of source . Let be
the routing matrix where if source uses link , and 0
otherwise. Let denote the queueing delay at link at time
. Let be the round-trip queueing delay, or

in vector notation, . Then the round-trip time of
source is .

Each source adapts its window periodically according
to4

(4)

where , at time .
A key departure of our model from those in the litera-

ture is that we assume that a source’s send rate, defined as

4Note that (4) can be rewritten as (when , constant)

From [44], TCP Vegas updates its window according to

where if , 0 if , and 1 if . Hence, FAST can be
thought of as a high-speed version of Vegas.

, cannot exceed the throughput it receives.
This is justified because of self-clocking: within one round-trip
time after a congestion window is increased, packet transmis-
sion will be clocked at the same rate as the throughput the
flow receives. See [66] for detailed justification and validation
experiments. A consequence of this assumption is that the link
queueing delay vector, , is determined implicitly by the
instantaneous window size in a static manner: given
for all , the link queueing delays for all are
given by

if
if

(5)

where again .
The next result says that the queueing delay is indeed well

defined. All proofs are relegated to the Appendix and [24].
Lemma 1: Suppose the routing matrix has full row rank.

Given , there exists a unique queueing delay vector
that satisfies (5).

The equilibrium values of windows and delays of the
network defined by (4)–(5) can be characterized as follows.
Consider the utility maximization problem

(6)

and the following (dual) problem:

(7)

Theorem 2: Suppose has full row rank. The unique equi-
librium point of the network defined by (4), (5) exists
and is such that is the unique
maximizer of (6) and is the unique minimizer of (7). This
implies in particular that the equilibrium rate is -weighted
proportionally fair.

Theorem 2 implies that FAST TCP has the same equilibrium
properties as TCP Vegas [44], [50]. Its equilibrium throughput
is given by

(8)

In particular, it does not penalize sources with large propaga-
tion delays . The relation (8) also implies that, in equilibrium,
source maintains packets in the buffers along its path [44],
[50]. Hence, the total amount of buffering in the network must
be at least packets in order to reach the equilibrium.5

We now turn to the stability of the algorithm.
Theorem 3 (Single-Link Heterogeneous-Source): Suppose

there is only a single link with capacity . Then the system
defined by (4)–(5) is locally asymptotically stable.

The basic idea of the proof is to show that the mapping from
(scaled) to defined by (4)–(5) has a Jacobian
whose spectral radius is strictly less than 1, uniformly in ;
see Theorem 6 in the Appendix. Hence, converges lo-
cally to the unique equilibrium. The proof technique seems to

5A version of the FAST implementation deals with the problem of insufficient
buffering by choosing among a small set of pre-determined values based on
achieved throughput. This can sometimes lead to unfair throughput allocation
as reported in some of the literature. This version was used around early 2004,
but discontinued since.
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Summary
•  The layered design approach for network protocols
•  TCP connection setup and termination

–  Transition between different states 
–  TIME_WAIT state

•  Port numbers & socket
•  TCP flow control and congestion control 
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