
Lecture 6   Overview
• Last Lecture
– Broadcast & Multicast Sockets

• This Lecture
– Wireless Sensor Networks (WSNs)
– Cyber-Physical Systems (CPSs)
– Internet of Things (IoTs)
– Source: lecture note

• Next Lecture
– Routing & MAC protocol design in WSNs
– Source: lecture note
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A Big Picture
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Ref:http://esd.sci.univr.it/images/wsn-example.png
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What are sensor devices? 
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Close View of TelosB 
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Wireless Sensor Network

“Sensor networks are massive numbers of small, inexpensive devices 
pervasive throughout electrical and mechanical systems and ubiquitous 
throughout the environment that monitor and control most aspects of our 
physical world.”

National Research Council
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Applications (cont)
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The Rio-Antirrio bridge in Greece



Applications (cont)
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More than 100 sensors were installed to monitor the health 
of the bridge.  

SHMS: Instrumentation

• Weather stations (2) (measures: wind speed and
direction, ambient temperature and relative humidity)

• Road temperature sensors (4)
• Concrete deck temperature sensors (5)
• Accelerometers (42)

- On shore (2)
- On pylons (12)
- On deck (15)
- On stays (13)

• Load cells on stays (16)

Meteo
station

• Load cells on stays (16)
• Load cell on fuse (4 digital+4 analog)
• Joint displacement sensor (on both expansion

joints)
• Water detection sensors (4)
• Strain gauges on gussets (16)

STRUCTURAL HEALTH MONITORING SYSTEMSTRUCTURAL HEALTH MONITORING SYSTEMÆÆINSTRUMENTATIONINSTRUMENTATION



Applications(cont.)
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Structural Health Monitoring of the   
2008 Olympic Venues in Beijing

(CGM Engineering)

Structural Health Monitoring of the 2008 Olympic 
Venues in Beijing
Application: LabVIEW and CompactRIO for structural 

health monitoring (SHM) determine stability, reliability, 
and livability of mega-structures in China

Challenge: Developing reliable SHM system with 
continuous monitoring, rugged enclosure, GPS 
synchronization, and remote access

Products: LabVIEW and CompactRIO

“Using National Instruments hardware and software, we designed, prototyped, and 
deployed a high-channel count, SHM system with GPS synchronization in less 
than one-year.” - Chris McDonald, CGM Engineering 

Bird's Nest stadium

Forsyth Barr Stadium



Applications(cont.)
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Environmental monitoring

Industrial automation
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Any other potential applications? 



Applications(cont.)
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Traffic Control 

& Inteligent Transport



Applications(cont.)
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Applications(cont.) 

Smart Park 
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Applications(cont.)
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E-health



Applications(cont.)
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Applications(cont.) 
Tracking 

Sensors 2009, 9              
 

 

5977

20th Sep. in 2007, 220 vehicles passed the gate, and among them 218 vehicles passed over two  
T-Sensor-v nodes, and we recorded the models for 205 vehicles among them. 

We summarized the results in Table 2 in two aspects: detection performance (D0-D3) and 
communication performance (C0-C2). D0 refers to the condition in which two T-Sensor-v nodes detect 
a vehicle and a T-Sink-v receives the DETECT packets from the two T-Sensor-v nodes, and the T-
Sink-v transmits the speed information packet to the first T-Sink-r node. D1 and D2 refer to the 
conditions in which one or two of T-Sensor-v nodes cannot detect a vehicle, respectively. D3 refers to 
the situation where two T-Sensor-v nodes detect a vehicle twice. C0 is the condition where the speed 
measurement of the T-Sensor-v node is delivered to the T-BS-com-v node via two T-Sink-r relay 
nodes. During multi-hop communication, ACK packets may be lost (the so-called lost ACK problem), 
and C1 refers to this situation. In this situation, the sender of a data packet retransmits the data packet 
which has already been received by the receiver, and the receiver receives the packet two times. C2 
refers to the situation in which 3 MAC-level retransmissions fail in one of the relay nodes. 98.2% (D0 
in Table 2) of vehicles were detected correctly by two T-Sensor-v nodes, and their speeds calculated 
by the T-Sink-v node were correctly estimated and forwarded to the T-BS-com-v node with a rate of 
97.7% (C0 in Table 2). 

Figure 7. ICC testbed. It consists of two zones. The first zone is located at the main gate of 
ICC, and the second zone is deployed at the main road in front of the research wing of ICC. 
The sky view is provided by Daum Communications (http://map.daum.net/). 

 

School Zone Safety System A Self-Configuring Location Discovery System for Smart Environments 3
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Figure 1.1. The Smart Kindergarten Localization Infrastructure

other tasks are responsible for extracting detailed location information
from the classroom environment. The students are tracked with the help
of a custom designed wearable device, the iBadge [2], that is able to ob-
tain its location with the help of a set of smart beacons, the Medusa
MK-2 beacon nodes attached on the classroom ceiling. Other objects in
the room are tracked with an object tag which is implemented with a
Mica wireless sensor node designed at UC Berkeley. All the devices are
battery operated and the system is designed to be rapidly deployable and
self-configuring. Operation in a typical classroom setting will proceed
as follows. First the ceiling beacons are evenly placed on the class-
room ceiling. During an initial bootstrapping phase, the ceiling beacons
form a local coordinate system by measuring the horizontal distances to
each other using their onboard ultrasonic distance measurement system.
This process takes a few seconds to complete and the locations of the
ceiling beacons are stored on a workstation that serves as the location
computation engine. Once the bootstrapping phase is completed, the
ceiling beacons enter a service mode. When in service mode, the bea-
cons synchronize among themselves to broadcast a combination of radio
and ultrasound reference signals into the classroom space at a frequency
of approximately 12 reference signals per second. The iBadges and ob-

Kids tracking in Kindergarten 

12 



Applications(cont.)
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Earthquake Early Warning



Features & Challenges
• Tight resource constraints

– Limited battery power
– Limited computation capability
– Limited memory
– Limited bandwidth
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Features & Challenges
n Tight resource constraints

– Limited battery power
– Limited computation capability
– Limited memory
– Limited bandwidth

n Dynamic network topology
– Battery depletion
– Node failure 
– Node mobility
– Unreliable links

n Traffic pattern
– Little activity in lengthy period
– Intensive traffic in short time 
– Highly correlated traffic
– End to end flows are required to be fair

Lecture 6 – WSN, CPS and IoT 17



Design Issues and Challenges
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n Restricted resources
q Battery power
q Processing power
q Memory
q Bandwidth

n Portability & Customizability
q Hardware evolvement

q Different requirements

q Reconfigurability



Design Issues and Challenges (cont)
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n Multi-tasking
q Sense data
q Aggregate data
q Encrypt/decrypt data
q Routing data

n Network dynamics
q Mobility
q Failure of channel/nodes 

n Distributed nature
q Inter-node communication
q Heterogeneity
q Scalability



Design Characteristics
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n Flexible architecture
q Run-time reconfiguration
q Small size of core kernel

n Efficient execution model
q Accurate synchronization
q Efficient task scheduling

n Clear application programming interface (API)
q Networking API
q Sensor data reading API
q Memory manipulation API
q Power management API
q Task management API



Design Characteristics (cont)
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n Reprogramming
q Dynamic software update
q Dynamic component linking

n Resource management
q Dynamic memory allocation
q Efficient task scheduling
q Optimal sleep scheduling

n Scheduling 
q Real-time
q Non real-time



IEEE 802.15.4 Physical Layer
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n 26 different operational channels 
q Channel 0 is defined only in Europe, resides on the 868 MHz band 
q Channels 1 to 10, defined only in US, resides on the 902-982 MHz 

band, 2MHz channel spacing
q Channels 11 to 26 are defined on the 2.4 GHz band, which makes 

them available everywhere. Channel spacing is 5MHz

n Radio modulation
q Channels 0 to 10 use binary phase-shift keying (BPSK)
q Channels 11 to 26 use quadrature phase-shift keying (QPSK)

n Radio channels in the 2.4GHz band share the frequency 
with 802.11(WiFi)



IEEE 802.15.4 Physical Layer
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Research problem
- Mitigate the interference 

between WiFi and IEEE802.15.4



TinyOS
• Open source component-based operating system
• Written in the nesC programming language
• Started as a project at UC Berkeley
– 1999: First TinyOS platform (Wec) and OS implementation.
– 2000: Version 0.43 was made public via SourceForge.
– 2002: Version 1.0 was implemented in nesC and released. 
– 2003: Version 1.1 includes data race detection.
– 2006: Version 2.0 was released.
– 2010: Version 2.1.1 was released.
– 2012: Version 2.1.1 was released.

• Involve thousands of academic and commercial 
developers and users worldwide
– ~35,000 downloads/year
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nesC- The TinyOS Language
• A Dialect of C language
• Basic concepts:
– Separation of construction and composition: components are 

assembled to form whole problems.
– Specification of component behaviour in terms of set of 

interfaces.
– Interfaces are bidirectional: commands and events
– Components are statically linked to each other via their 

interfaces.
– nesC is designed under the expectation that code will be 

generated by whole-program compilers. 
• nesC output is a c program file that is compiled and linked using 

GNU gcc tools. 
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TinyOS Program Compiling
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TinyOS Architecture
• Monolithic architecture
– Component model at development and compile stages
– Single static image at run time
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TinyOS Basic Constructs (1)
• Component-based design
• A component consists of 
– Interfaces

• The services it provides
• The services it uses

– Implementation 
• Defines internal working of a component

• Example
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Interface 

Implementation

Component

module  TimerM {
provides {

interface StdControl;
interface Timer [uint8_t id];               

}
uses interface Clock;

}
Implementation {

… 
}



TinyOS Basic Constructs
• Components have three computational abstractions:
– Commands

• Requests to the component to perform 
some service.

• e.g. to trigger a timer
– Events

• Signal the completion of services
• e.g. hardware interrupts

– Tasks
• Intra-component concurrency
• Intensive work done at low-priority
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TinyOS Component Type
• Modules
– provide code for function implementation

• Configurations
– wire components together, connecting interfaces between 

each other
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Memory Model

• Static 
– No heap

• No dynamic run-time memory allocation
– No function pointers
– Components are statically linked

• Size required determined at compile time

• Global variables
– Conserve memory
– Frame per component

• Local variables
– Save on the stack
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SMARTER SENSORS IN SILICON 5

TOS Memory Model

RAMSTATIC
No HEAP (malloc)
No FUNCTION Pointers

Global Variables
Conserve Memory
Use pointers, donEt copy buffers

Local Variables
On Stack

STACK

Free

Global



TinyOS File Types

• Interfaces 
– Specifies functionality to outside
– What commands can be called
– What events need handling

• Module
– Code implementation
– Code for interface functions

• Configuration
– Wiring of components
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TinyOS File Types

� Interfaces (xxx.nc)
� Specifies functionality to outside world
� what commands can be called
� what events need handling

� Module (xxxM.nc)
� Code implementation
� Code for Interface functions

� Configuration (xxxC.nc)
� Wiring of components
� When top level app,

drop C from filename xxx.nc

interfaceB.nc

comp3M.nc
(code)

interfaceA.nc

comp1C.nc
(wires)

interfaceB.nc

interfaceA.nc

comp2M.nc
(code)

interfaceM.nc

app.nc
(wires)

interfaceA.nc

main.nc

interfaceM.nc



BlinkTask – A simple TinyOS Application

• Blink an LED at a Periodic Rate
• Build by “wiring” together components 
– A timer component to provide periodic EVENTs
– A LED component to control an LED
• On Timer Event
– Post a task to  turn ON or OFF LED
• Study Objective:
– Understand the structure of a TinyOS program
– Understand Commands, Events and Tasks in action
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BlinkTask Files

• In the apps/tutorials/BlinkTask directory
– BlinkTaskAppC.nc The Configruation
– BlinkTaskC.nc The Implementation
– Makefile Build information

COMPONENT = BlinkTaskAppC
include  $(MAKERULES) 

• Understanding BlinkTask
– Identify the TOS Component used
– Determine the Interfaces the BlinkTask Component must handle
– The wiring of the components
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BlinkTaskAppC.nc

Lecture 6 – WSN, CPS and IoT 35

configuration BlinkTaskAppC {}
implementation {

component MainC, BlinkTaskC, LedsC;
component new TimerMillic () as Timer0;
BlinkTaskC - > MainC.Boot;
BlinkTaskC.Timer0 - > Timer0;
BlinkTaskC.Leds - > LedsC;

}

Components used in 
this application

MainC is the TOS 
kernel

This defines the “wiring” 
between components



BlinkTaskC.nc
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#include “Timer.h”
module BlinkTask{

uses interface Timer<TMilli> as timer0;
uses interface Leds;
uses interface Boot;

}
implementation {

bool state;
task void toggle() {

if (state) {
call Leds.led0On();

}
else {

call Leds.led0Off();
}

}

Kernel call this at boot 
time

Handle the Timer 
signal – post a task

Non-time critical task 
decides how to set the leds

event void Boot.booted(){
state = FALSE:
call Timer0.startPeriodic(1000);

}

event void Timer0.fired() {
state = ! state;
post toggle();

}
}



Contiki                

• What is Contiki and where does the name come from?

• Written in C programming language
• An open-source multitasking operating system
• The basic kernel and most core functions were developed 

by Adam Dunkels at Swedish Institute of Computer 
Science

Lecture 6 – WSN, CPS and IoT 37

The Kon-Tiki  raft: sailed across the 
Pacific Ocean with minimal resources
Used by a Norwegian explorer and writer Thor 
Heyerdahl  in 1947



Contiki Development History                 
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Contiki Architecture               

• Modular architecture
• Event-driven kernel
• Other features

– Multi-tasking
– Protothreads
– TCP/IP
– IPV4/V6
– Web browser
– Dynamic program 

loading
– Coffee file system
– …
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Memory Management
• Dynamic memory management
– Managed Memory Allocator (MMA)

• Dynamic allocate and deallocate memory
• Free from fragmentation

– Macro and functions
• #define  MMEM_PTR(m)  // get a pointer to the managed memory
• mmem_init (void)
• memb_alloc (struct mmem *m, unsigned int size) 
• memb_free (struct mmem *m)
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Timers in Contiki
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•struct timer
l Passive timer, only keeps track of its expiration time

•struct etimer
l Active timer, sends an event when it expires

•struct ctimer
l Active timer, calls a function when it expires

•struct rtimer
l Real-time timer, calls a function at an exact time

Please read this essay to get more details on the timer library 
in Contiki.
https://github.com/contiki-os/contiki/wiki/Timers



Demo: BlinkTask Revisited

• Blink an LED at a Periodic Rate
• On Timer Event
– turn ON or OFF LED

• Study Objective:
– Understand the structure of a Contiki program
– Understand how to use timers
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#include "contiki.h"
#include "dev/leds.h"

#include <stdio.h> /* For printf() */
/*---------------------------------------------------------------------------*/
/* We declare the process */
PROCESS(blink_process, "LED blink process");

/* We require the processes to be started automatically */
AUTOSTART_PROCESSES(&blink_process);
/*---------------------------------------------------------------------------*/

/* Implementation of the second process */
PROCESS_THREAD(blink_process, ev, data)
{

static struct etimer timer;
static uint8_t leds_state = 0;
PROCESS_BEGIN();
while (1)
{
// we set the timer from here every time
etimer_set(&timer, CLOCK_CONF_SECOND / 4);

// and wait until the vent we receive is the one we're waiting for
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER);

// update the LEDs
leds_off(0xFF);
leds_on(leds_state);
leds_state += 1;

}
PROCESS_END();

}
/*---------------------------------------------------------------------------*/



Cyber-Physical System (CPS)
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• Cyber – computation, communication, and control that 
are discrete, logical, and switched 

• Physical – natural and human-made systems governed 
by the laws of physics and operating in continuous time 

• Cyber-Physical Systems – systems in which the cyber 
and physical systems are tightly integrated at all scales 
and levels 

“CPS will transform how we interact with the physical 
world just like the Internet transformed how we interact 

with one another.” 



Cyber-Physical System (CPS)
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• Cyber-physical systems (CPSs) are physical and 
engineered systems whose operations are monitored, 
coordinated, controlled and integrated by a computing 
and communication core. 

Sensing + Communication + Computation + Control

  

Page 25 Spring 2013 CS 795/895 - Cyber Physical System Seminar 

What are Cyber-Physical Systems?  

• Cyber-physical systems (CPSs) 
are physical and engineered 
systems whose operations are 
monitored, coordinated, 
controlled and integrated by a 
computing and communication 
core.  

• Convergence of computation, 
communication, information, 
and control  

  



CPS – a Concept Map
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CPS Applications
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Healthcare

http://publish.illinois.edu/mdpnp-architecture/complexity-reduction/

http://www.nsf.gov/news/special_reports/cyber-physical/



CPS Applications
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Manufacturing



Applications(cont.)
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Smart 
Building



CPS Applications
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Transportation



Internet of Things (IoTs)
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What are Internet of Things?
“A network of items—each embedded with sensors—which are 
connected to the Internet. ”                                          -- IEEE

“The basic idea is that IoT will connect objects around us (electronic, 
electrical, non-electrical) to provide seamless communication and 
contextual services provided by them. Development of RFID tags, 
sensors, actuators, mobile phones make it possible to materialize IoT 
which interact and co-operate each other to make the service better 
and accessible anytime, from anywhere.”        -- IETF



Any-X Point of View
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IoT Layered Architecture
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Source: ZTE

Sensing and Communication

Middleware and Applications



Enabling Technologies
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Advances in sensor and microprocessor design
•Bluetooth
•RFID
•ZigBee
•WiFi
•4G networks
•…
Advances in connectivity and networks
•Smaller and more durable sensors
•Multi-processor chips
•Increasing processor performance and efficiency
•Lower costs



IoT Future Revolution
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3.1 Internet of Things Vision 9

Figure 3.1 Internet-connected devices and the future evolution (Source: Cisco, 2011)

wireless broadband connections.The Internet ofThings makes use of synergies
that are generated by the convergence of Consumer, Business and Industrial
Internet Consumer, Business and Industrial Internet. The convergence creates
the open, global network connecting people, data, and things. This conver-
gence leverages the cloud to connect intelligent things that sense and transmit a
broad array of data, helping creating services that would not be obvious without
this level of connectivity and analytical intelligence. The use of platforms is
being driven by transformative technologies such as cloud, things, and mobile.
The Internet of Things and Services makes it possible to create networks
incorporating the entire manufacturing process that convert factories into a
smart environment. The cloud enables a global infrastructure to generate new
services, allowing anyone to create content and applications for global users.
Networks of things connect things globally and maintain their identity online.
Mobile allows connection to this global infrastructure anytime, anywhere. The
result is a globally accessible network of things, users, and consumers, who
are available to create businesses, contribute content, generate and purchase
new services.

Platforms also rely on the power of network effects, as they allow more
things, they become more valuable to the other things and to users that make
use of the services generated. The success of a platform strategy for IoT
can be determined by connection, attractiveness and knowledge/information/
data flow.

The European Commission while recognizing the potential of Converging
Sciences and Technologies Converging Sciences and Technologies to advance

By 2020 the number of Internet-connected devices is 
expected to reach 50 billion.  



IoT Applications
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Digital Retail Store
(source: Cisco)

70 Internet of Things Strategic Research and Innovation Agenda

To keep up with all these changes, retailers must deploy smart, connected
devices throughout their operations.

By tying together everything from inventory tracking to advertising,
retailers can gain visibility into their operations and nimbly respond to shifts in
consumer behaviour. The challenge is finding a scalable, secure, manageable
path to deploying all of these systems.

Retailers are also using sensors, beacons, scanning devices, and other
IoT technologies to optimize internally: inventory, fleet, resource, and partner
management through real-time analytics, automatic replenishment, notifica-
tions, store layout, and more. The Big data generated now affords retailers a
factual understanding of how their products, customers, affiliates, employees,
and external factors come together. Altogether, this is a $1.6T opportunity for
retailers, with $81B in value already realized in 2013 [64].

Figure 3.40 The Digital Retail Store (Source: Cisco)



LoRa Technology
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• A physical layer or wireless modulation for IoT
– Long range communication (> 10 km in rural areas)
– Robust communication (Chirp Spread Spectrum)
– Low power (> 10 years battery life)
– Large network capacity (a large number of nodes in a 

network)



LoRa Frequency Bands
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169 MHz, 433 MHz, 868 MHZ (Europe), 915 MHz (North America)



Chirp Spread Spectrum (CSS)
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• A chirp is a signal in which the frequency increases (up-
chirp) or decreases (down-chirp) with time. 

• Spread Factor = chip rate / symbol rate 
– a value between 7 and 12

3.3 Chirp Spread Spectrum

LoRaTM modulation, derivative of Chirp Spread Spectrum (CSS), works by moving an RF tone around
through time in a very linear way. LoRaTM transmissions work by chirping, breaking the chirps in di↵erent
places in terms of time and frequency in order to encode a symbol. One of the important LoRaTM features
is the ability to generate a stable chirp using a frac-N phase lock loop (PLL) [15]. On Figure 5 we can see
the waveform of an up and down linear chirp and its frequency evolution through time.

Figure 5: A linear chirp waveform; a sinusoidal wave that increases or decrease in frequency linearly through
time. Left: Up chirp waveform. Right: Down chirp waveform.

Depending on the bandwidth and the Spreading Factor selected, the time of the frequency sweep (time
symbol) will take more or less time. One increment on the selected Spreading Factor will duplicate the time
of the symbol, so one symbol sent at SF12 will be 32 times longer than one symbol sent at SF7. However the
bandwidth will be inversely proportional with time, duplicate the bandwidth will divide the symbol time by
a half.
On Figures 6 and 7 we see how this two parameters (Spreading Factor and bandwidth) determine the symbol
time of our transmission.

13



LoRaWAN Architecture 
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Communication in LoRaWAN
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• Three classes: Class A, Class B and Class C

4 LoRaWANTM classes

LoRaTM network distinguishes between three bidirectional classes: class A, class B and class C. This three
classes serve di↵erent applications and have di↵erent requirements in order to optimize a variety of end
applications. The device classes trade o↵ network downlink communication latency versus battery lifetime.
In a control or actuator-type application, the downlink communication latency is an important factor.

Figure 11: LoRaWANTM classes comparative8.

Class A: End-devices of class A allow bi-directional communications whereby each end-device’s uplink
transmission is followed by two short downlink receive windows.
The transmission slot scheduled by the end-device is based on its own communication needs, when the end-
device needs to transmit, it will do it following the Medium Access Control Aloha. On annex A we study
the limitations of this MAC protocol applied to a LoRaTM network.
This class A operation is the lowest power end-device system for applications that only require downlink
communication from the server shortly after the end-device has sent an uplink transmission. Downlink
communications from the server at any other time will have to wait until the next scheduled uplink is done.
This class, supported by all devices, is intended for battery powered end-devices or actuators with no
latency constraint. It can be useful for transmissions mainly in the uplink sense such as sensors for control
temperature, tra�c, metering, monitoring, mobile asset tracking...

8
https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
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Summary
• Wireless sensor networks
– Characteristics and Applications
– TinyOS and Contiki

• Cyber-physical systems
– Definitions and applications

• Internet of Things
– Architecture 
– Enable technologies

• LoRa and LoRaWAN
– Features and Architecture 
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