
Lecture 6 Overview
• Last Lecture
– Broadcast & Multicast Sockets

• This Lecture
– Wireless Sensor Networks (WSNs)
– Cyber-Physical Systems (CPSs)
– Internet of Things (IoTs)
– Source: lecture note

• Next Lecture
– Routing & MAC protocol design in WSNs
– Source: lecture note

Lecture 6 – WSN, CPS and IoT 1

A Big Picture

Lecture 6 – WSN, CPS and IoT 2
Ref:http://esd.sci.univr.it/images/wsn-example.png

http://esd.sci.univr.it/images/wsn-example.png

What are sensor devices?

Lecture 6 – WSN, CPS and IoT 3

WeC 99
�Smart Rock�

Mica 1/02
Rene 11/00

Spec 6/03
�Mote on
a chip�

Telos 4/04

Battery

External Memory

Radio Transceiver

Micro-controller ADC

Sensing Units

Sensor Platform Architecture

q Temperature
q Humidity
q Light
q Pressure
q Image
q Accelerometer
q …

Sensing Unit:

Close View of TelosB

Lecture 6 – WSN, CPS and IoT 4

USB
Connector

User
button

Reset
button

Photo synthetically
Active Radiation

Sensor
Total Solar
Radiation
Sensor

Humidity
Temperature
Sensor

LEDs Microcontroller CC2420 Radio

Wireless Sensor Network

“Sensor networks are massive numbers of small, inexpensive devices
pervasive throughout electrical and mechanical systems and ubiquitous
throughout the environment that monitor and control most aspects of our
physical world.”

National Research Council

Lecture 6 – WSN, CPS and IoT 5

Applications (cont)

Lecture 6 – WSN, CPS and IoT 6

The Rio-Antirrio bridge in Greece

Applications (cont)

Lecture 6 – WSN, CPS and IoT 7

More than 100 sensors were installed to monitor the health
of the bridge.

SHMS: Instrumentation

• Weather stations (2) (measures: wind speed and
direction, ambient temperature and relative humidity)

• Road temperature sensors (4)
• Concrete deck temperature sensors (5)
• Accelerometers (42)

- On shore (2)
- On pylons (12)
- On deck (15)
- On stays (13)

• Load cells on stays (16)

Meteo
station

• Load cells on stays (16)
• Load cell on fuse (4 digital+4 analog)
• Joint displacement sensor (on both expansion

joints)
• Water detection sensors (4)
• Strain gauges on gussets (16)

STRUCTURAL HEALTH MONITORING SYSTEMSTRUCTURAL HEALTH MONITORING SYSTEMÆÆINSTRUMENTATIONINSTRUMENTATION

Applications(cont.)

Lecture 6 – WSN, CPS and IoT 8

Structural Health Monitoring of the
2008 Olympic Venues in Beijing

(CGM Engineering)

Structural Health Monitoring of the 2008 Olympic
Venues in Beijing
Application: LabVIEW and CompactRIO for structural

health monitoring (SHM) determine stability, reliability,
and livability of mega-structures in China

Challenge: Developing reliable SHM system with
continuous monitoring, rugged enclosure, GPS
synchronization, and remote access

Products: LabVIEW and CompactRIO

“Using National Instruments hardware and software, we designed, prototyped, and
deployed a high-channel count, SHM system with GPS synchronization in less
than one-year.” - Chris McDonald, CGM Engineering

Bird's Nest stadium

Forsyth Barr Stadium

Applications(cont.)

Lecture 6 – WSN, CPS and IoT 9

Environmental monitoring

Industrial automation

Lecture 6 – WSN, CPS and IoT 10

Any other potential applications?

Applications(cont.)

Lecture 6 – WSN, CPS and IoT 11

Traffic Control

& Inteligent Transport

Applications(cont.)

Lecture 6 – WSN, CPS and IoT 12

Applications(cont.)

Smart Park

11

Applications(cont.)

Lecture 6 – WSN, CPS and IoT 13

E-health

Applications(cont.)

Lecture 6 – WSN, CPS and IoT 14

Applications(cont.)
Tracking

Sensors 2009, 9

5977

20th Sep. in 2007, 220 vehicles passed the gate, and among them 218 vehicles passed over two
T-Sensor-v nodes, and we recorded the models for 205 vehicles among them.

We summarized the results in Table 2 in two aspects: detection performance (D0-D3) and
communication performance (C0-C2). D0 refers to the condition in which two T-Sensor-v nodes detect
a vehicle and a T-Sink-v receives the DETECT packets from the two T-Sensor-v nodes, and the T-
Sink-v transmits the speed information packet to the first T-Sink-r node. D1 and D2 refer to the
conditions in which one or two of T-Sensor-v nodes cannot detect a vehicle, respectively. D3 refers to
the situation where two T-Sensor-v nodes detect a vehicle twice. C0 is the condition where the speed
measurement of the T-Sensor-v node is delivered to the T-BS-com-v node via two T-Sink-r relay
nodes. During multi-hop communication, ACK packets may be lost (the so-called lost ACK problem),
and C1 refers to this situation. In this situation, the sender of a data packet retransmits the data packet
which has already been received by the receiver, and the receiver receives the packet two times. C2
refers to the situation in which 3 MAC-level retransmissions fail in one of the relay nodes. 98.2% (D0
in Table 2) of vehicles were detected correctly by two T-Sensor-v nodes, and their speeds calculated
by the T-Sink-v node were correctly estimated and forwarded to the T-BS-com-v node with a rate of
97.7% (C0 in Table 2).

Figure 7. ICC testbed. It consists of two zones. The first zone is located at the main gate of
ICC, and the second zone is deployed at the main road in front of the research wing of ICC.
The sky view is provided by Daum Communications (http://map.daum.net/).

School Zone Safety System A Self-Configuring Location Discovery System for Smart Environments 3

Sylph server

RFM Wireless Link

Bluetooth Wireless Link

Medusa MK-2 Ceiling
Beacons

Wearable iBadgesLocation
Computation

Engine

Figure 1.1. The Smart Kindergarten Localization Infrastructure

other tasks are responsible for extracting detailed location information
from the classroom environment. The students are tracked with the help
of a custom designed wearable device, the iBadge [2], that is able to ob-
tain its location with the help of a set of smart beacons, the Medusa
MK-2 beacon nodes attached on the classroom ceiling. Other objects in
the room are tracked with an object tag which is implemented with a
Mica wireless sensor node designed at UC Berkeley. All the devices are
battery operated and the system is designed to be rapidly deployable and
self-configuring. Operation in a typical classroom setting will proceed
as follows. First the ceiling beacons are evenly placed on the class-
room ceiling. During an initial bootstrapping phase, the ceiling beacons
form a local coordinate system by measuring the horizontal distances to
each other using their onboard ultrasonic distance measurement system.
This process takes a few seconds to complete and the locations of the
ceiling beacons are stored on a workstation that serves as the location
computation engine. Once the bootstrapping phase is completed, the
ceiling beacons enter a service mode. When in service mode, the bea-
cons synchronize among themselves to broadcast a combination of radio
and ultrasound reference signals into the classroom space at a frequency
of approximately 12 reference signals per second. The iBadges and ob-

Kids tracking in Kindergarten

12

Applications(cont.)

Lecture 6 – WSN, CPS and IoT 15

Earthquake Early Warning

Features & Challenges
• Tight resource constraints

– Limited battery power
– Limited computation capability
– Limited memory
– Limited bandwidth

Lecture 6 – WSN, CPS and IoT 16

Features & Challenges
n Tight resource constraints

– Limited battery power
– Limited computation capability
– Limited memory
– Limited bandwidth

n Dynamic network topology
– Battery depletion
– Node failure
– Node mobility
– Unreliable links

n Traffic pattern
– Little activity in lengthy period
– Intensive traffic in short time
– Highly correlated traffic
– End to end flows are required to be fair

Lecture 6 – WSN, CPS and IoT 17

Design Issues and Challenges

Lecture 6 – WSN, CPS and IoT 18

n Restricted resources
q Battery power
q Processing power
q Memory
q Bandwidth

n Portability & Customizability
q Hardware evolvement

q Different requirements

q Reconfigurability

Design Issues and Challenges (cont)

Lecture 6 – WSN, CPS and IoT 19

n Multi-tasking
q Sense data
q Aggregate data
q Encrypt/decrypt data
q Routing data

n Network dynamics
q Mobility
q Failure of channel/nodes

n Distributed nature
q Inter-node communication
q Heterogeneity
q Scalability

Design Characteristics

Lecture 6 – WSN, CPS and IoT 20

n Flexible architecture
q Run-time reconfiguration
q Small size of core kernel

n Efficient execution model
q Accurate synchronization
q Efficient task scheduling

n Clear application programming interface (API)
q Networking API
q Sensor data reading API
q Memory manipulation API
q Power management API
q Task management API

Design Characteristics (cont)

Lecture 6 – WSN, CPS and IoT 21

n Reprogramming
q Dynamic software update
q Dynamic component linking

n Resource management
q Dynamic memory allocation
q Efficient task scheduling
q Optimal sleep scheduling

n Scheduling
q Real-time
q Non real-time

IEEE 802.15.4 Physical Layer

Lecture 6 – WSN, CPS and IoT 22

n 26 different operational channels
q Channel 0 is defined only in Europe, resides on the 868 MHz band
q Channels 1 to 10, defined only in US, resides on the 902-982 MHz

band, 2MHz channel spacing
q Channels 11 to 26 are defined on the 2.4 GHz band, which makes

them available everywhere. Channel spacing is 5MHz

n Radio modulation
q Channels 0 to 10 use binary phase-shift keying (BPSK)
q Channels 11 to 26 use quadrature phase-shift keying (QPSK)

n Radio channels in the 2.4GHz band share the frequency
with 802.11(WiFi)

IEEE 802.15.4 Physical Layer

Lecture 6 – WSN, CPS and IoT 23

Research problem
- Mitigate the interference

between WiFi and IEEE802.15.4

TinyOS
• Open source component-based operating system
• Written in the nesC programming language
• Started as a project at UC Berkeley
– 1999: First TinyOS platform (Wec) and OS implementation.
– 2000: Version 0.43 was made public via SourceForge.
– 2002: Version 1.0 was implemented in nesC and released.
– 2003: Version 1.1 includes data race detection.
– 2006: Version 2.0 was released.
– 2010: Version 2.1.1 was released.
– 2012: Version 2.1.1 was released.

• Involve thousands of academic and commercial
developers and users worldwide
– ~35,000 downloads/year

Lecture 6 – WSN, CPS and IoT 24

nesC- The TinyOS Language
• A Dialect of C language
• Basic concepts:
– Separation of construction and composition: components are

assembled to form whole problems.
– Specification of component behaviour in terms of set of

interfaces.
– Interfaces are bidirectional: commands and events
– Components are statically linked to each other via their

interfaces.
– nesC is designed under the expectation that code will be

generated by whole-program compilers.
• nesC output is a c program file that is compiled and linked using

GNU gcc tools.

Lecture 6 – WSN, CPS and IoT 25

TinyOS Program Compiling

Lecture 6 – WSN, CPS and IoT 26

Application
(nesC)

nesC
complier

TinyOS Kernel (nesC)
TinyOS libs (nesC)

Application &
TinyOS (C)

C
complier

Application
executable

TinyOS Architecture
• Monolithic architecture
– Component model at development and compile stages
– Single static image at run time

Lecture 6 – WSN, CPS and IoT 27

TOS

hardware hardware

Hardware presentation/Abstraction Layer

System Components

TOS Component Interfaces
Library

Components

Application Specific
Components

Application Interfaces

TOS Scheduler (MAIN)
Application

ConfigurationUSER

Commands events

TinyOS Basic Constructs (1)
• Component-based design
• A component consists of
– Interfaces

• The services it provides
• The services it uses

– Implementation
• Defines internal working of a component

• Example

Lecture 6 – WSN, CPS and IoT 28

Interface

Implementation

Component

module TimerM {
provides {

interface StdControl;
interface Timer [uint8_t id];

}
uses interface Clock;

}
Implementation {

…
}

TinyOS Basic Constructs
• Components have three computational abstractions:
– Commands

• Requests to the component to perform
some service.

• e.g. to trigger a timer
– Events

• Signal the completion of services
• e.g. hardware interrupts

– Tasks
• Intra-component concurrency
• Intensive work done at low-priority

Lecture 6 – WSN, CPS and IoT 29

TinyOS Component Type
• Modules
– provide code for function implementation

• Configurations
– wire components together, connecting interfaces between

each other

Lecture 6 – WSN, CPS and IoT 30

Memory Model

• Static
– No heap

• No dynamic run-time memory allocation
– No function pointers
– Components are statically linked

• Size required determined at compile time

• Global variables
– Conserve memory
– Frame per component

• Local variables
– Save on the stack

Lecture 6 – WSN, CPS and IoT 31
SMARTER SENSORS IN SILICON 5

TOS Memory Model

RAMSTATIC
No HEAP (malloc)
No FUNCTION Pointers

Global Variables
Conserve Memory
Use pointers, donEt copy buffers

Local Variables
On Stack

STACK

Free

Global

TinyOS File Types

• Interfaces
– Specifies functionality to outside
– What commands can be called
– What events need handling

• Module
– Code implementation
– Code for interface functions

• Configuration
– Wiring of components

Lecture 6 – WSN, CPS and IoT 32CSE 466 - Winter 2007 Case Study: TinyOS 13

TinyOS File Types

� Interfaces (xxx.nc)
� Specifies functionality to outside world
� what commands can be called
� what events need handling

� Module (xxxM.nc)
� Code implementation
� Code for Interface functions

� Configuration (xxxC.nc)
� Wiring of components
� When top level app,

drop C from filename xxx.nc

interfaceB.nc

comp3M.nc
(code)

interfaceA.nc

comp1C.nc
(wires)

interfaceB.nc

interfaceA.nc

comp2M.nc
(code)

interfaceM.nc

app.nc
(wires)

interfaceA.nc

main.nc

interfaceM.nc

BlinkTask – A simple TinyOS Application

• Blink an LED at a Periodic Rate
• Build by “wiring” together components
– A timer component to provide periodic EVENTs
– A LED component to control an LED
• On Timer Event
– Post a task to turn ON or OFF LED
• Study Objective:
– Understand the structure of a TinyOS program
– Understand Commands, Events and Tasks in action

Lecture 6 – WSN, CPS and IoT 33

BlinkTask Files

• In the apps/tutorials/BlinkTask directory
– BlinkTaskAppC.nc The Configruation
– BlinkTaskC.nc The Implementation
– Makefile Build information

COMPONENT = BlinkTaskAppC
include $(MAKERULES)

• Understanding BlinkTask
– Identify the TOS Component used
– Determine the Interfaces the BlinkTask Component must handle
– The wiring of the components

Lecture 6 – WSN, CPS and IoT 34

BlinkTaskAppC.nc

Lecture 6 – WSN, CPS and IoT 35

configuration BlinkTaskAppC {}
implementation {

component MainC, BlinkTaskC, LedsC;
component new TimerMillic () as Timer0;
BlinkTaskC - > MainC.Boot;
BlinkTaskC.Timer0 - > Timer0;
BlinkTaskC.Leds - > LedsC;

}

Components used in
this application

MainC is the TOS
kernel

This defines the “wiring”
between components

BlinkTaskC.nc

Lecture 6 – WSN, CPS and IoT 36

#include “Timer.h”
module BlinkTask{

uses interface Timer<TMilli> as timer0;
uses interface Leds;
uses interface Boot;

}
implementation {

bool state;
task void toggle() {

if (state) {
call Leds.led0On();

}
else {

call Leds.led0Off();
}

}

Kernel call this at boot
time

Handle the Timer
signal – post a task

Non-time critical task
decides how to set the leds

event void Boot.booted(){
state = FALSE:
call Timer0.startPeriodic(1000);

}

event void Timer0.fired() {
state = ! state;
post toggle();

}
}

Contiki

• What is Contiki and where does the name come from?

• Written in C programming language
• An open-source multitasking operating system
• The basic kernel and most core functions were developed

by Adam Dunkels at Swedish Institute of Computer
Science

Lecture 6 – WSN, CPS and IoT 37

The Kon-Tiki raft: sailed across the
Pacific Ocean with minimal resources
Used by a Norwegian explorer and writer Thor
Heyerdahl in 1947

Contiki Development History

Lecture 6 – WSN, CPS and IoT 38Contiki Tutorial

Adam Dunkels <adam@sics.se>!Z

Contiki Timeline

7887 788O 788S 788V 788Z788! 788^ 7889 7883

-/P?
=P? D)2(A+A&!B8

=P? L;L06&_M)5A'H> 788O`

P?&R)6&'02>)6&20(/)6+>&_Wa'\&788S`

D)2(A+A&!B7

W'e&L)6(

D)2(A+A&L;L06&_W.\0(> 788S`

?6)()(,60;1>

?6)()(,60;1>&L;L06&_'02'H> 788Z`

<H2;.A*&-A2+A2F&_'02'H> 788Z`
D)2(A+A&7B8

D)2(A+A&7B!

?)/06&L6)RA-A2F&_W.\0(> 788^`

cA.0&_'02'H> 788^`

?)/06&L6)RA-A2F&_'02'H> 788^`

e0>(&10.)&@&'02'H> 788^
XM)(()-;%&?A**)Yn

D)2(A+A&7B7

D)2(A+A&7B7B!

P2>(;2(&D)2(A+A

D))I;

Contiki Tutorial

Adam Dunkels <adam@sics.se>!Z

Contiki Timeline

7887 788O 788S 788V 788Z788! 788^ 7889 7883

-/P?
=P? D)2(A+A&!B8

=P? L;L06&_M)5A'H> 788O`

P?&R)6&'02>)6&20(/)6+>&_Wa'\&788S`

D)2(A+A&!B7

W'e&L)6(

D)2(A+A&L;L06&_W.\0(> 788S`

?6)()(,60;1>

?6)()(,60;1>&L;L06&_'02'H> 788Z`

<H2;.A*&-A2+A2F&_'02'H> 788Z`
D)2(A+A&7B8

D)2(A+A&7B!

?)/06&L6)RA-A2F&_W.\0(> 788^`

cA.0&_'02'H> 788^`

?)/06&L6)RA-A2F&_'02'H> 788^`

e0>(&10.)&@&'02'H> 788^
XM)(()-;%&?A**)Yn

D)2(A+A&7B7

D)2(A+A&7B7B!

P2>(;2(&D)2(A+A

D))I; Contiki Tutorial

Adam Dunkels <adam@sics.se>!Z

Contiki Timeline

7887 788O 788S 788V 788Z788! 788^ 7889 7883

-/P?
=P? D)2(A+A&!B8

=P? L;L06&_M)5A'H> 788O`

P?&R)6&'02>)6&20(/)6+>&_Wa'\&788S`

D)2(A+A&!B7

W'e&L)6(

D)2(A+A&L;L06&_W.\0(> 788S`

?6)()(,60;1>

?6)()(,60;1>&L;L06&_'02'H> 788Z`

<H2;.A*&-A2+A2F&_'02'H> 788Z`
D)2(A+A&7B8

D)2(A+A&7B!

?)/06&L6)RA-A2F&_W.\0(> 788^`

cA.0&_'02'H> 788^`

?)/06&L6)RA-A2F&_'02'H> 788^`

e0>(&10.)&@&'02'H> 788^
XM)(()-;%&?A**)Yn

D)2(A+A&7B7

D)2(A+A&7B7B!

P2>(;2(&D)2(A+A

D))I;

Contiki 2.5

Contiki Tutorial

Adam Dunkels <adam@sics.se>!Z

Contiki Timeline

7887 788O 788S 788V 788Z788! 788^ 7889 7883

-/P?
=P? D)2(A+A&!B8

=P? L;L06&_M)5A'H> 788O`

P?&R)6&'02>)6&20(/)6+>&_Wa'\&788S`

D)2(A+A&!B7

W'e&L)6(

D)2(A+A&L;L06&_W.\0(> 788S`

?6)()(,60;1>

?6)()(,60;1>&L;L06&_'02'H> 788Z`

<H2;.A*&-A2+A2F&_'02'H> 788Z`
D)2(A+A&7B8

D)2(A+A&7B!

?)/06&L6)RA-A2F&_W.\0(> 788^`

cA.0&_'02'H> 788^`

?)/06&L6)RA-A2F&_'02'H> 788^`

e0>(&10.)&@&'02'H> 788^
XM)(()-;%&?A**)Yn

D)2(A+A&7B7

D)2(A+A&7B7B!

P2>(;2(&D)2(A+A

D))I;

Contiki 2.7

Contiki Tutorial

Adam Dunkels <adam@sics.se>!Z

Contiki Timeline

7887 788O 788S 788V 788Z788! 788^ 7889 7883

-/P?
=P? D)2(A+A&!B8

=P? L;L06&_M)5A'H> 788O`

P?&R)6&'02>)6&20(/)6+>&_Wa'\&788S`

D)2(A+A&!B7

W'e&L)6(

D)2(A+A&L;L06&_W.\0(> 788S`

?6)()(,60;1>

?6)()(,60;1>&L;L06&_'02'H> 788Z`

<H2;.A*&-A2+A2F&_'02'H> 788Z`
D)2(A+A&7B8

D)2(A+A&7B!

?)/06&L6)RA-A2F&_W.\0(> 788^`

cA.0&_'02'H> 788^`

?)/06&L6)RA-A2F&_'02'H> 788^`

e0>(&10.)&@&'02'H> 788^
XM)(()-;%&?A**)Yn

D)2(A+A&7B7

D)2(A+A&7B7B!

P2>(;2(&D)2(A+A

D))I;

2013 2015

Contiki Tutorial

Adam Dunkels <adam@sics.se>!Z

Contiki Timeline

7887 788O 788S 788V 788Z788! 788^ 7889 7883

-/P?
=P? D)2(A+A&!B8

=P? L;L06&_M)5A'H> 788O`

P?&R)6&'02>)6&20(/)6+>&_Wa'\&788S`

D)2(A+A&!B7

W'e&L)6(

D)2(A+A&L;L06&_W.\0(> 788S`

?6)()(,60;1>

?6)()(,60;1>&L;L06&_'02'H> 788Z`

<H2;.A*&-A2+A2F&_'02'H> 788Z`
D)2(A+A&7B8

D)2(A+A&7B!

?)/06&L6)RA-A2F&_W.\0(> 788^`

cA.0&_'02'H> 788^`

?)/06&L6)RA-A2F&_'02'H> 788^`

e0>(&10.)&@&'02'H> 788^
XM)(()-;%&?A**)Yn

D)2(A+A&7B7

D)2(A+A&7B7B!

P2>(;2(&D)2(A+A

D))I;

Contiki 3.0

Contiki Architecture

• Modular architecture
• Event-driven kernel
• Other features

– Multi-tasking
– Protothreads
– TCP/IP
– IPV4/V6
– Web browser
– Dynamic program

loading
– Coffee file system
– …

Lecture 6 – WSN, CPS and IoT 39

Radio CPU Sensors Oscillator Others

Hardware

Radio CPU Sensors Oscillator Others

Driver

uIP Loader ProtoThreads

Contiki Core

A
pp

lic
at

io
n

1

A
pp

lic
at

io
n

2

A
pp

lic
at

io
n

N

Contiki OS Node Management

Se
ns

or
 M

an
ge

r

Co
re

 U
pd

at
er

Sy
ste

m
 M

an
ag

er

N
et

w
or

k
M

an
ag

er

Kernel

Memory Management
• Dynamic memory management
– Managed Memory Allocator (MMA)

• Dynamic allocate and deallocate memory
• Free from fragmentation

– Macro and functions
• #define MMEM_PTR(m) // get a pointer to the managed memory
• mmem_init (void)
• memb_alloc (struct mmem *m, unsigned int size)
• memb_free (struct mmem *m)

Lecture 6 – WSN, CPS and IoT 40

Timers in Contiki

Lecture 6 – WSN, CPS and IoT 41

•struct timer
l Passive timer, only keeps track of its expiration time

•struct etimer
l Active timer, sends an event when it expires

•struct ctimer
l Active timer, calls a function when it expires

•struct rtimer
l Real-time timer, calls a function at an exact time

Please read this essay to get more details on the timer library
in Contiki.
https://github.com/contiki-os/contiki/wiki/Timers

Demo: BlinkTask Revisited

• Blink an LED at a Periodic Rate
• On Timer Event
– turn ON or OFF LED

• Study Objective:
– Understand the structure of a Contiki program
– Understand how to use timers

Lecture 6 – WSN, CPS and IoT 42

Lecture 6 – WSN, CPS and IoT 43

#include "contiki.h"
#include "dev/leds.h"

#include <stdio.h> /* For printf() */
/*---*/
/* We declare the process */
PROCESS(blink_process, "LED blink process");

/* We require the processes to be started automatically */
AUTOSTART_PROCESSES(&blink_process);
/*---*/

/* Implementation of the second process */
PROCESS_THREAD(blink_process, ev, data)
{

static struct etimer timer;
static uint8_t leds_state = 0;
PROCESS_BEGIN();
while (1)
{
// we set the timer from here every time
etimer_set(&timer, CLOCK_CONF_SECOND / 4);

// and wait until the vent we receive is the one we're waiting for
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER);

// update the LEDs
leds_off(0xFF);
leds_on(leds_state);
leds_state += 1;

}
PROCESS_END();

}
/*---*/

Cyber-Physical System (CPS)

Lecture 6 – WSN, CPS and IoT 44

• Cyber – computation, communication, and control that
are discrete, logical, and switched

• Physical – natural and human-made systems governed
by the laws of physics and operating in continuous time

• Cyber-Physical Systems – systems in which the cyber
and physical systems are tightly integrated at all scales
and levels

“CPS will transform how we interact with the physical
world just like the Internet transformed how we interact

with one another.”

Cyber-Physical System (CPS)

Lecture 6 – WSN, CPS and IoT 45

• Cyber-physical systems (CPSs) are physical and
engineered systems whose operations are monitored,
coordinated, controlled and integrated by a computing
and communication core.

Sensing + Communication + Computation + Control

Page 25 Spring 2013 CS 795/895 - Cyber Physical System Seminar

What are Cyber-Physical Systems?

• Cyber-physical systems (CPSs)
are physical and engineered
systems whose operations are
monitored, coordinated,
controlled and integrated by a
computing and communication
core.

• Convergence of computation,
communication, information,
and control

CPS – a Concept Map

Lecture 6 – WSN, CPS and IoT 46

CPS Applications

Lecture 6 – WSN, CPS and IoT 47

Healthcare

http://publish.illinois.edu/mdpnp-architecture/complexity-reduction/

http://www.nsf.gov/news/special_reports/cyber-physical/

CPS Applications

Lecture 6 – WSN, CPS and IoT 48

Manufacturing

Applications(cont.)

Lecture 6 – WSN, CPS and IoT 49

Smart
Building

CPS Applications

Lecture 6 – WSN, CPS and IoT 50

Transportation

Internet of Things (IoTs)

Lecture 6 – WSN, CPS and IoT 51

What are Internet of Things?
“A network of items—each embedded with sensors—which are
connected to the Internet. ” -- IEEE

“The basic idea is that IoT will connect objects around us (electronic,
electrical, non-electrical) to provide seamless communication and
contextual services provided by them. Development of RFID tags,
sensors, actuators, mobile phones make it possible to materialize IoT
which interact and co-operate each other to make the service better
and accessible anytime, from anywhere.” -- IETF

Any-X Point of View

Lecture 6 – WSN, CPS and IoT 52

AnyKX(Point(of(View(

•  The(Internet(of(Things(allows(people(and(things((
to(be(connected(Any1me,(Anyplace,(with(
Anything(and(Anyone,(ideally(using(Any(path/
network(and(Any(service.(7

Source: Perera et al. 2014

AnyKX(Point(of(View(

•  The(Internet(of(Things(allows(people(and(things((
to(be(connected(Any1me,(Anyplace,(with(
Anything(and(Anyone,(ideally(using(Any(path/
network(and(Any(service.(7

Source: Perera et al. 2014

AnyKX(Point(of(View(

•  The(Internet(of(Things(allows(people(and(things((
to(be(connected(Any1me,(Anyplace,(with(
Anything(and(Anyone,(ideally(using(Any(path/
network(and(Any(service.(7

Source: Perera et al. 2014

IoT Layered Architecture

Lecture 6 – WSN, CPS and IoT 53

AnyKX(Point(of(View(

•  The(Internet(of(Things(allows(people(and(things((
to(be(connected(Any1me,(Anyplace,(with(
Anything(and(Anyone,(ideally(using(Any(path/
network(and(Any(service.(7

Source: Perera et al. 2014

Source: ZTE

Sensing and Communication

Middleware and Applications

Enabling Technologies

Lecture 6 – WSN, CPS and IoT 54

Advances in sensor and microprocessor design
•Bluetooth
•RFID
•ZigBee
•WiFi
•4G networks
•…
Advances in connectivity and networks
•Smaller and more durable sensors
•Multi-processor chips
•Increasing processor performance and efficiency
•Lower costs

IoT Future Revolution

Lecture 6 – WSN, CPS and IoT 55

3.1 Internet of Things Vision 9

Figure 3.1 Internet-connected devices and the future evolution (Source: Cisco, 2011)

wireless broadband connections.The Internet ofThings makes use of synergies
that are generated by the convergence of Consumer, Business and Industrial
Internet Consumer, Business and Industrial Internet. The convergence creates
the open, global network connecting people, data, and things. This conver-
gence leverages the cloud to connect intelligent things that sense and transmit a
broad array of data, helping creating services that would not be obvious without
this level of connectivity and analytical intelligence. The use of platforms is
being driven by transformative technologies such as cloud, things, and mobile.
The Internet of Things and Services makes it possible to create networks
incorporating the entire manufacturing process that convert factories into a
smart environment. The cloud enables a global infrastructure to generate new
services, allowing anyone to create content and applications for global users.
Networks of things connect things globally and maintain their identity online.
Mobile allows connection to this global infrastructure anytime, anywhere. The
result is a globally accessible network of things, users, and consumers, who
are available to create businesses, contribute content, generate and purchase
new services.

Platforms also rely on the power of network effects, as they allow more
things, they become more valuable to the other things and to users that make
use of the services generated. The success of a platform strategy for IoT
can be determined by connection, attractiveness and knowledge/information/
data flow.

The European Commission while recognizing the potential of Converging
Sciences and Technologies Converging Sciences and Technologies to advance

By 2020 the number of Internet-connected devices is
expected to reach 50 billion.

IoT Applications

Lecture 6 – WSN, CPS and IoT 56

Digital Retail Store
(source: Cisco)

70 Internet of Things Strategic Research and Innovation Agenda

To keep up with all these changes, retailers must deploy smart, connected
devices throughout their operations.

By tying together everything from inventory tracking to advertising,
retailers can gain visibility into their operations and nimbly respond to shifts in
consumer behaviour. The challenge is finding a scalable, secure, manageable
path to deploying all of these systems.

Retailers are also using sensors, beacons, scanning devices, and other
IoT technologies to optimize internally: inventory, fleet, resource, and partner
management through real-time analytics, automatic replenishment, notifica-
tions, store layout, and more. The Big data generated now affords retailers a
factual understanding of how their products, customers, affiliates, employees,
and external factors come together. Altogether, this is a $1.6T opportunity for
retailers, with $81B in value already realized in 2013 [64].

Figure 3.40 The Digital Retail Store (Source: Cisco)

LoRa Technology

Lecture 6 – WSN, CPS and IoT 57

• A physical layer or wireless modulation for IoT
– Long range communication (> 10 km in rural areas)
– Robust communication (Chirp Spread Spectrum)
– Low power (> 10 years battery life)
– Large network capacity (a large number of nodes in a

network)

LoRa Frequency Bands

Lecture 6 – WSN, CPS and IoT 58

169 MHz, 433 MHz, 868 MHZ (Europe), 915 MHz (North America)

Chirp Spread Spectrum (CSS)

Lecture 6 – WSN, CPS and IoT 59

• A chirp is a signal in which the frequency increases (up-
chirp) or decreases (down-chirp) with time.

• Spread Factor = chip rate / symbol rate
– a value between 7 and 12

3.3 Chirp Spread Spectrum

LoRaTM modulation, derivative of Chirp Spread Spectrum (CSS), works by moving an RF tone around
through time in a very linear way. LoRaTM transmissions work by chirping, breaking the chirps in di↵erent
places in terms of time and frequency in order to encode a symbol. One of the important LoRaTM features
is the ability to generate a stable chirp using a frac-N phase lock loop (PLL) [15]. On Figure 5 we can see
the waveform of an up and down linear chirp and its frequency evolution through time.

Figure 5: A linear chirp waveform; a sinusoidal wave that increases or decrease in frequency linearly through
time. Left: Up chirp waveform. Right: Down chirp waveform.

Depending on the bandwidth and the Spreading Factor selected, the time of the frequency sweep (time
symbol) will take more or less time. One increment on the selected Spreading Factor will duplicate the time
of the symbol, so one symbol sent at SF12 will be 32 times longer than one symbol sent at SF7. However the
bandwidth will be inversely proportional with time, duplicate the bandwidth will divide the symbol time by
a half.
On Figures 6 and 7 we see how this two parameters (Spreading Factor and bandwidth) determine the symbol
time of our transmission.

13

LoRaWAN Architecture

Lecture 6 – WSN, CPS and IoT 60

Communication in LoRaWAN

Lecture 6 – WSN, CPS and IoT 61

• Three classes: Class A, Class B and Class C

4 LoRaWANTM classes

LoRaTM network distinguishes between three bidirectional classes: class A, class B and class C. This three
classes serve di↵erent applications and have di↵erent requirements in order to optimize a variety of end
applications. The device classes trade o↵ network downlink communication latency versus battery lifetime.
In a control or actuator-type application, the downlink communication latency is an important factor.

Figure 11: LoRaWANTM classes comparative8.

Class A: End-devices of class A allow bi-directional communications whereby each end-device’s uplink
transmission is followed by two short downlink receive windows.
The transmission slot scheduled by the end-device is based on its own communication needs, when the end-
device needs to transmit, it will do it following the Medium Access Control Aloha. On annex A we study
the limitations of this MAC protocol applied to a LoRaTM network.
This class A operation is the lowest power end-device system for applications that only require downlink
communication from the server shortly after the end-device has sent an uplink transmission. Downlink
communications from the server at any other time will have to wait until the next scheduled uplink is done.
This class, supported by all devices, is intended for battery powered end-devices or actuators with no
latency constraint. It can be useful for transmissions mainly in the uplink sense such as sensors for control
temperature, tra�c, metering, monitoring, mobile asset tracking...

8
https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf

18

Summary
• Wireless sensor networks
– Characteristics and Applications
– TinyOS and Contiki

• Cyber-physical systems
– Definitions and applications

• Internet of Things
– Architecture
– Enable technologies

• LoRa and LoRaWAN
– Features and Architecture

Lecture 6 – WSN, CPS and IoT 62

