COSC410 Solutions to Assignment 1

1. Assume we have a language L_A with $A = \{p, q\}$ and $S = W_A = \{11, 10, 01, 00\}$. Give the Lindenbaum-Tarski algebra of propositions, using one representative sentence for each proposition.

Solution:

2. Show that $\varphi = \psi$ iff every state *s* in *S* satisfies the sentence $\varphi \leftrightarrow \psi$.

Solution:

Suppose $\varphi = \psi$.

Then $Mod(\phi) = Mod(\psi)$, i.e. the two sets have exactly the same elements.

Now we must show that all states satisfy the string $\varphi \leftrightarrow \psi$.

Let $s \in S$ be arbitrary.

There are exactly two cases: either *s* satisfies $\varphi \leftrightarrow \psi$ or it doesn't.

Suppose *s* doesn't satisfy $\varphi \Leftrightarrow \psi$.

Then *s* does not give the same truth value to both φ and ψ (because, by the definition of satisfaction, if *s* gave the same truth value to φ and ψ , then *s* would satisfy $\varphi \leftrightarrow \psi$).

So either s satisfies φ but not ψ , or s satisfies ψ but not φ ,

i.e. either $s \in Mod(\varphi)$ but $s \notin Mod(\psi)$, or $s \notin Mod(\varphi)$ but $s \in Mod(\psi)$.

Thus $Mod(\phi)$ and $Mod(\psi)$ do not have exactly the same members.

But this contradicts the fact that $Mod(\varphi) = Mod(\psi)$.

We therefore conclude that *s* satisfies $\varphi \leftrightarrow \psi$.

And since *s* was chosen arbitrarily, every state satisfies $\varphi \leftrightarrow \psi$.

Conversely, suppose that every state *s* in *S* satisfies the sentence $\varphi \leftrightarrow \psi$.

Now we must show that $\varphi = \psi$, i.e. that $Mod(\varphi) = Mod(\psi)$.

There are exactly two cases: either $Mod(\varphi) = Mod(\psi)$ or not.

If not, then there is some state *s* that belongs to one of the sets but not to the other.

Suppose $s \in Mod(\varphi)$ but $s \notin Mod(\psi)$.

Then *s* fails to satisfy $\varphi \leftrightarrow \psi$, contradicting our starting assumption.

On the other hand, suppose $s \notin Mod(\varphi)$ but $s \in Mod(\psi)$.

Then again *s* fails to satisfy $\varphi \leftrightarrow \psi$, contradicting our starting assumption.

We conclude that $Mod(\varphi) = Mod(\psi)$, i.e. $\varphi = \psi$.

3. We show that |= is contrapositive, i.e. that if $\alpha |= \beta$ then $\neg \beta |= \neg \alpha$.

Solution:

Suppose $\alpha \mid = \beta$, i.e. that every model of α is also a model of β .

Now we must show that $\neg \beta \mid = \neg \alpha$.

Pick any model of $\neg \beta$, and call it s.

There are exactly two cases: either s satisfies α or not.

We want to show that s satisfies $\neg \alpha$, i.e. that s does not satisfy α .

So imagine that s does satisfy α .

SInce $\alpha \models \beta$, s will also satisfy β .

But we picked s to be a model of $\neg \beta$, so s cannot satisfy β .

Hence we have a contradiction.

So we may eliminate the possibility that s satisfies α .

4. Suppose $A = \{p_0, p_1, p_2\}$. Consider the sentence $p_1 \leftrightarrow p_2$. Give two equivalent sentences, one in SDNF and the other in CNF (conjunctive normal form).

Solution:

First we need to find the models of $p_1 \leftrightarrow p_2$. Just go through $S = \{111, 110, 101, 011, 100, 010, 001, 000\}$ and see which of these give the same truth value to both p_1 and p_2 . We see that $Mod(p_1 \leftrightarrow p_2) = \{111, 011, 100, 000\}$.

Now take the state descriptions of the models and hook them together with disjunctions to get the SDNF:

$$(p_0 \wedge p_1 \wedge p_2) \vee (\neg p_0 \wedge p_1 \wedge p_2) \vee (p_0 \wedge \neg p_1 \wedge \neg p_2) \vee (\neg p_0 \wedge \neg p_1 \wedge \neg p_2).$$

For CNF we can use the nonmodels of $p_1 \leftrightarrow p_2$, and since we know what the models of this sentence are it is easy to find the nonmodels: 110, 101, 010 and 001.

We want to exclude each of 110, 101, 010 and 001, and a sentence that does this is:

$$\neg (p_0 \land p_1 \land \neg p_2) \land \neg (p_0 \land \neg p_1 \land p_2) \land \neg (\neg p_0 \land p_1 \land \neg p_2) \land \neg (\neg p_0 \land \neg p_1 \land p_2).$$

Now use De Morgan's law: $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$.

The above sentence simplifies to the CNF:

$$(\neg p_0 \lor \neg p_1 \lor p_2) \land (\neg p_0 \lor p_1 \lor \neg p_2) \land (p_0 \lor \neg p_1 \lor p_2) \land (p_0 \lor p_1 \lor \neg p_2).$$