
Assignment 2 for COSC410 Logic for AI

Due 16 May 2016 for 11 marks = 11%

1. Let LA be arbitrary and let α, β, ϕ ∈ LA. Suppose that 4 is a total preorder on S. Let |∼ be the
rational consequence relation induced by 4.

Show that |∼ has the property of conditional insertion, i.e. that if α ∧ β |∼ ϕ then α |∼ β → ϕ.
(1 mark)

2. Consider the 3-Card System with A = {r1, r2, r3, g1, . . . , b3} and S = {rgb, rbg, grb, gbr, brg, bgr}.
Assume that the total preorder faithful to belief set K is given by the following:

rbg brg
rgb grb
gbr bgr

Let K be the set of beliefs to which the ordering is faithful. Give, for each of the following, its set of
models and then express the belief set in the form Cn({α}):

K

K ∗ g2
K − (¬g1)

(2 marks)

3. Show that agents have negative introspection in epistemic logic, i.e. that if s satisfies ¬[i]ϕ then s
satisfies [i]¬[i]ϕ . (2 marks)

4. Using a SAT solver (6 marks)

The aim of this question is to give you the experience of using a well known SAT solver to solve a
problem. Although describing the problem takes some space, it is not intended to be terribly difficult.
But you’ll learn a lot.

The solver you will use is zChaff1. There are some nice slides about it2 by Lilia Yerosheva.

~ok/COSC410/zchaff.macos zchaff compiled for MacOS X
~ok/COSC410/zchaff.linux zchaff compiled for Linux
~ok/COSC410/zchaff.d zchaff sources

(The Linux version isn’t built yet.)

zchaff is a command line program that takes a file name and an optional time limit as arguments. The
input file describes a problem in Conjunctive Normal Form, more precisely, in the DIMACS notation
for CNF.

Conjunctive Normal Form will be explained in Richard O’Keefe’s first lecture, but here’s a quick
summary:

• an atom is a propositional variable;

• a literal is either an atom or the logical negation of an atom;

• a clause is a set of literals, considered as combined by disjunction (∨); and

• a CNF formula is a set of clauses, considered as combined by conjunction (∧).

1https://www.princeton.edu/ chaff/zchaff.html
2http://www.cse.nd.edu/Reports/2005/TR-2005-04.pdf

1

It’s called Conjunctive Normal Form because the top level operation is conjunction.

The DIMACS format for CNF is

〈DIMACS CNF〉 −→ 〈comment line〉∗ 〈problem line〉 〈clause〉∗

〈comment line〉 −→ any line beginning with “c ”.

〈problem line〉 −→ “p cnf ” 〈variable count〉 “ ” 〈clause count〉

〈variable count〉 −→ the number of variables, n, as a decimal integer.

〈clause count〉 −→ the number of clauses, m, as a decimal integer.

〈clause〉 −→ 〈literal〉+ 0

〈literal〉 −→ i or −i where 1 ≤ i ≤ n.

For example, p ∧ (p⇒ q) ∧ ¬q in CNF would be

{{p}, {¬p, q}, {¬q}}

and might be given to zchaff as

c p & (p => q) & ~q

p cnf 2 3

1 0

-1 2 0

-2 0

Note that zchaff doesn’t report models. It only reports whether the formula it was given is satisfiable
or not. It also reports some statistics. Several applications embed the underlying solver library and
do get models out of it. This question is about formulating a problem in CNF and running a SAT
checker, not about writing a SAT checker.

Your problem is to construct an n-bit binary adder3 using n full adder4 stages. You will need to use
4n+ 1 variables:

• 4k + 1 : Ck for 0 ≤ k ≤ n (carry)

• 4k + 2 : Bk for 0 ≤ k < n (addend)

• 4k + 3 : Ak for 0 ≤ k < n (augend)

• 4k + 4 : Sk for 0 ≤ k < n (sum)

Each full adder stage satisfies these equations:

2Ck+1 + Sk = Ak +Bk + Ck

which turns into the logical forms

Sk ≡ Ak ⊕Bk ⊕ Ck

Ck+1 ≡ (Ak ∧Bk) ∨ (Ck ∧ (Ak ∨Bk))

where ⊕ represents exclusive or.

You will generate the same pattern of clauses n times. This makes it easy to generate the clauses using
a simple program. The easiest way to turn the two equations above into clauses is to use the Tseitin
transformation5. If you do that, you will need a new variable for each operator, 2 ≡, 2 ⊕, 2 ∧, 2 ∨,
making a total of 12n+ 1 variables.

3https://en.wikipedia.org/wiki/Adder (electronics)
4https://en.wikipedia.org/wiki/Adder (electronics)#Full adder
5https://en.wikipedia.org/wiki/Tseytin transformation

2

What should you test? You should test that some sums (A+B) have an answer and that some differences
(S-A) have an answer, though zchaff won’t tell you what they are. You should test that some wrong
answers (A0 = 0, B0 = 0, C0 = 0, S0 = 1) are not satisfiable. You might try, for example, A = (001)
n/3 times, S = (010) n/3 times, and see how zchaff’s time grows with n. The main point of testing is
to check that you are generating the right clauses, so most of your testing should be n = 0 (there is
just one variable, C0), n = 1, and n = 2.

3

