
COSC410 Logic for AI
Introduction to SAT solvers

Richard A. O’Keefe

12 May 2016



Key Topics

I propositional formulas

I seeing formulas as trees

I clausal form

I the SAT problem and its complexity

I getting to clausal form (two ways)

I the DPLL procedure



Propositional Formulas

A propositional formula φ can be

I an atomic sentence π such as p

I or a compound formula ψ ↔ χ, ψ → χ, ψ ∨ χ,
ψ ∧ χ, or ¬χ, where ψ and χ are smaller
formulas.



Not a string but a tree

I When we look at a written formula, we see a
string of symbols.

I We have to use precedence rules and
parentheses to disambiguate it.

I But a compound formula has a principal
connective and one or more parts.

I We’re dealing with a tree.



Why do we care?
Recursive definition by cases.

V [π]ρ = ρ(π)

V [ψ ↔ χ]ρ = V [ψ]ρ↔V [χ]ρ

V [ψ → χ]ρ = V [ψ]ρ→V [χ]ρ

V [ψ ∨ χ]ρ = V [ψ]ρ∨V [χ]ρ

V [ψ ∧ χ]ρ = V [ψ]ρ∧V [χ]ρ

V [¬χ]ρ = ¬V [χ]ρ

where the connectives on the left connect trees and
the connectives on the right are applied to truth
values, and ρ maps atomic sentences to truth
values.



Why this is meaningful

Induction over trees works like induction over
natural numbers.

S [π] = 1

S [ψ ↔ χ] = 1 + S [ψ] + S [χ]

S [ψ → χ] = 1 + S [ψ] + S [χ]

S [ψ ∨ χ] = 1 + S [ψ] + S [χ]

S [ψ ∧ χ] = 1 + S [ψ] + S [χ]

S [¬χ] = 1 + S [χ]

Recursion on formulas drive sizes (S) down.



Proofs by cases and induction

I Just as we can define functions on formulas
recursively, so we can give inductive proofs
about formulas.

I Having more ways to build a tree makes a
language more convenient to use, but harder to
reason about.

I A simpler language may mean more complex
formulas



We’re already missing handy connectives

I ψ ⊕ χ = ¬(ψ ↔ χ)

I if τ then ψ else χ

I 〈αβγ〉, the median or majority function

I n=(ψ, χ, . . . ) = exactly n of ψ, χ, . . . are true.
ψ ∧ χ = 2=(ψ, χ).

I n≥(ψ, χ, . . . ) = at least n of ψ, χ, . . . are true.
ψ ∨ χ = 1≥(ψ, χ).



Simplicity can go too far, or can it?

Anything you can express with the standard
propositional connectives or the ones introduced on
the previous slide can be expressed using just one
connective.

I NAND: ψ∧̃χ = ¬(ψ ∧ χ)

I NOR: ψ∨̃χ = ¬(ψ ∨ χ)

I ITE: if π then ψ else χ (but needs > and ⊥ at
leaves)

NAND and NOR are handy for making electronic
circuits. If-then-else is one effective approach to
SAT solving. Not good for people, though!



Clausal form

I A sentence in clausal form is the conjunction
(∧) of a set of clauses.

I A clause is the disjunction (∨) of a set of
literals.

I A literal is either an atom (π) or the negation
of an atom (¬π).

Example: ((¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r)).



Suppressing the connectives

I Since we know the top level connectives are all
∧ we don’t need to write them, just write the
sentence as a set.

I Since we know the mid level connectives are all
∨ we don’t need to write them, just write the
clause as a set.

Example: {{¬p, q}, {¬q, r}, {¬r}}.



Valuations

I A valuation is a function from atomic sentences
to truth values.

I Because there are only two truth values, we
can think of a valuation as a partition of the
set of atomic sentences into T (the ones
mapped to >) and F (the ones mapped to ⊥)

I The second approach is handy for partial
valuations where some atomic sentences have
been assigned values and others may not. We
shall meet partial valuations later.

I A model of a formula is a valuation making the
formula true.



SAT

Given a propositional formula in clausal form,

I Decision problem: does it have a model?

I Search problem: find a model or determine
that there isn’t one.

I Optimisation problem: given a price function
on valuations, find a cheapest model (if there is
one).

Strictly speaking, SAT is the decision problem.



SAT complexity

I If a formula has n variables, there are 2n

valuations, which we can generate
straightforwardly.

I If the formula has m operators, checking a
valuation takes O(m) time, so we can try all
possible valuations in O(m.2n) time.

I Can we do better than this?

I In theory, no. Cook proved that SAT is
NP-complete. (Checking is easy, searching is
hard. Lots of problems can be converted to
SAT, which shows they’re hard.)

I Yet SAT-solvers are quite practical these days.



k-SAT

I k-SAT is the problem where every clause has k
literals.

I 2-SAT can be solved in linear time.

I 3-SAT is as hard as SAT.



Getting to clausal form

I The basic idea is to rewrite a formula from one
form to another.

I We use logical theorems α ≡ β (to preserve
meaning)

I and orient them α⇒ β to convert a “more
complex” formula to strictly “less complex” one
(so that rewriting terminates and “simplifies”)



Four stages

1. Eliminate equivalence.

2. Eliminate implication.

3. Move negation down to the leaves.

4. Move conjunction above disjunction.

Each of these stages has its own notion of
“complexity”.



Eliminate equivalence

I Complexity of a formula: the number of ↔
connectives in it.

I Rewrite rule: ψ ↔ χ⇒ (ψ ∧ χ) ∨ (¬ψ ∧ ¬χ).

I Apply this rule bottom-up, so that we know ψ
and χ do not contain ↔.



Eliminate implication

I Complexity of a formula: the number of →
connectives in it.

I Rewrite rule: ψ → χ⇒ (¬ψ) ∨ χ
I This rule does not duplicate ψ or χ so the proof

of termination works top-down or bottom-up.



Move negation down to the leaves

I Complexity: the number of nodes covered by
negations

I Rules:
I ¬(ψ ∨ χ)⇒ (¬ψ) ∧ (¬χ)
I ¬(ψ ∧ χ)⇒ (¬ψ) ∨ (¬χ)
I ¬(¬χ)⇒ χ



Move conjunction above disjunction

I Complexity: weighted sum of or-over-and
violations.

I Rules:
I τ ∨ (ψ ∧ χ)⇒ (τ ∨ ψ) ∧ (τ ∨ χ)
I (ψ ∧ χ) ∨ τ ⇒ (τ ∨ ψ) ∧ (τ ∨ χ)

I What if both rules are applicable? E.g.,
(a ∧ b) ∨ (c ∧ d).

I You get the same end result either way. (Try
it.)



Oops

I This process shows that we can get from any
formula to clausal form by a simple
mechanisable procedure.

I But “Eliminate equivalence” duplicates
subformulas. Hello power of two! Eliminating
⊕ or 〈. . . 〉 or if-then-else or n= or n≥ this way
would also duplicate subformulas.

I Worse still, applying the distribution laws also
duplicates a subformula. Hello exponential
growth!



Fighting the monster

I Cook’s theorem tells us that we can’t do better
than exponential time in the worst case.

I But we don’t have to go out of our way to
cause trouble for ourselves.

I Avoiding an exponential blowup in the size of
the formula is a good idea.

I The easiest way to do that introduces new
atomic sentences.



The Tseitin Transformation

I Key idea: introduce a new atom for each node
in the tree.

I Each node now relates at most 3 atoms, and
its semantics can be represented by a small set
of clauses.

I Glue those clause sets together with ∧ and
you’re done.

I But since the original formula and the
transformed one have different sets of atoms,
they have different sets of valuations.



We mostly don’t care

I Decision: the transformed formula has a
model if and only if the original formula has a
mode.

I Search: any model for the transformed
formula yields a model for the original, by
dropping the new atoms.

I Optimisation: if the price of a valuation
ignores the new atoms, the transformed and
original formulas have the same cheapest
models.

I See Tseytin transformation in Wikipedia.



Tseitin: the rules

C = ¬A ⇒ {{¬A,¬C}, {A,C}}
C = A ∧ B ⇒ {{¬A,¬B ,C}, {A,¬C}, {B ,¬C}}
C = A ∨ B ⇒ {{A,B ,¬C}, {¬A,C}, {¬B ,C}}
C = A→ B ⇒ {{¬A,B ,¬C}, {A,C}, {¬B ,C}}
C = A↔ B ⇒ {{A,B ,C}, {A,¬B ,¬C},

{¬A,B ,¬C}, {¬A,¬B ,C}}



Exhaustive search

I A simple way to solve any problem with a finite
number of discrete variables:

I Generate each combination and
I check if it works.

I Simple, yes. Efficient, no. Adequate to show
that the problem can be solved. Always seek
something better.

I Called “generate-and-test”. Rule of thumb:
push tests back into generator.



Seeking a path through a state space

— Simple depth first search
procedure dfs(state, solved?, report, children)

if solved?(state) then
report(state)

else
for successor ∈ children(state) do

dfs(successor, solved?, report, children)



Backtrack programming

I Given a problem with n variables, where each
variable xi has a finite domain Di , and there is
a system of constraints,

I we seek a solution by calling solve({}, {1..n},
{j 7→ Dj , . . . }), where

I solve(Known, Unknown, Domains) =
I if Unknown is empty, report Known.
I remove some j from Unknown.
I 〈try values for j〉
I undo remove j

I If no solution is reported, there is none.



〈try values for j〉

I for each v in Domains[j ] in some order,
I add j 7→ v to Known.
I if the constraints are not yet violated

I remove now impossible values from Domains
I solve(Known′, Unknown′, Domains′)
I undo remove now impossible values

I undo add j 7→ v



Room for heuristics

I Which variable j do you pick? (Try the one
with the smallest domain, called the “fail-fast”
heuristic.)

I What order do you try the values v?

I How much work do you put into ensuring that
constraints are not obviously unsatisfiable?

I Do you learn anything from unsuccessful
searches? (Modern SAT solvers do.)

I Key point: the undo steps may be unfamiliar.
They let us explore large problems by making
small, incremental changes and undoing them,
instead of copying.



Backtracking is used for

I pretty much any constraint satisfaction or
combinatorial optimisation problem, at least as
a starting point.

I graph colouring, parsing mildly ambiguous
grammars, Sudoku and similar puzzles, finding
paths, planning, finding assignments of people
to tasks or resources to people, course
selection, . . .

Incremental simplification (alias forward checking,
alias constraint propagation) usually helps.



Davis-Putnam-Logemann-Loveland
Procedure

I Variables: atomic sentences

I Their domains: {⊥,>}
I Constraints: the clauses

I Known: a partial valuation

I Unknown: as-yet-unknown atomic sentences

I Seeking: a complete valuation consistent with
the clauses



At each DPLL step

I unit propagation. Unit clauses have one
literal. “Propagation” is substituting known
information in clauses (or other constraints)
and simplifying. For example, {x} and
{{x ,¬y}, {¬x , y}} simplifies to {{y}}. The
first clause drops out. The second clause
simplifies: if x is true, the only way to make
¬x ∨ y true is for y to be true. Now we can
substitute y and simplify. . .

I pure literal elimination. If some clause has π
but no clause has ¬π, make π true and delete
all clauses containing π. (Similarly ¬π.)



and then

After unit propagation and pure literal elimination,

I search: pick some variable π

I make π true, simplify, and recur.

I undo those changes.

I make π false, simplify, and recur.

I undo those changes.

Finally undo changes made by unit propagation and
pure literal elimination.



Improvements to DPLL

I Clever data structure design to make changing
and undoing changes easy.

I Typical backtracking heuristics: choose the
most constrained variable, try first the value
that will let you eliminate most clauses.

I Learn from failure: non-chronological
backtracking and conflict-driven clause
learning.

I Human care in formulating a problem, e.g.,
exploit symmetry.


