
COSC410 Logic for AI
First-Order Predicate Calculus

Richard A. O’Keefe

17 May 2016

Key Topics

I Things we can’t say in propositional calculus

I Predicates

I Functions

I Variables

I Quantifiers

I Semantics

I Resolution

I Unification

I Decidability

I Interesting/Useful results

Things we can’t say: splitting atoms

I Suppose we want to say “Abigail’s father is
Richard” and “Lily’s father is Richard”.

I If we want to model these statements in
propositional calculus, we have to use different
symbols, because they mean different things.
(Abigail is in fact my daughter, but Lily is a fox
terrier.)

I But atomic sentences in propositional calculus
have no parts in common, because they have
no parts.

I father(Abigail, Richard) ∧
father(Lily, Richard).

Atomic sentences with parts, BUT

Something like father(Abigail, Richard) does have
parts, but it has no parts that are sentences, so as a
sentence it is atomic.

What are these parts?

I There are parts like Abigail, Lily, Richard, that
stand for things in some universe of discourse.
They are somewhat like nouns. These parts are
called terms. (We’ll see how terms are made
shortly.)

I There are parts like father(,) and living()
that stand for relations about things in the
universe of discourse. They are somewhat like
(stative) verbs. These parts are called
predicates.

I Applying a predicate to enough terms gives us
an atomic sentence.

Talking about arithmetic
I We want to be able to talk about 1 + 2 and

4× 5 and the like. 1, 2, 4, 5 are no trouble.
They are names for things in our universe of
discourse, just like Abigail, Lily, and Richard.

I But what about + and × ? They aren’t
truth values or predicates and they don’t stand
for specific numbers. The things that these
symbols stand for are functions that take
numbers as arguments and give us other
numbers as results. We’ll call the symbols
function symbols and say that a function
symbol can be combined with zero or more
terms to give us a term.

Constants and functions

I A function symbol f of arity n stands for a
function f̂ : Un → U

I but we don’t know which function until
someone tells us.

I A constant symbol is just a function symbol of
arity 0.

Things we can’t say: incomplete
information

I We can’t say “someone is Lily’s father” so far,
we can only say that some specific dog is her
father.

I We can’t say “27 has a prime factor” without
exhibiting one.

I We can’t say “all men are mortal”, only that if
some specific thing is a man then that thing is
mortal.

I We can distinguish between saying
“¬father(Lily, Richard)” and failing to say that
he is.

Mathematical variables

∑
x∈S

f (x)
∏
x∈S

f (x)∫ b

a

f (x) dx
⋃
x∈S

f (x)

lim
x→0

sin(x)

x
λx .f (x)

Mathematical variables 2

I there are variables

I that are bound by an operator

I and can be renamed

I meaning comes from the operator not the
variable

Classical syllogisms

1. all men are mortal

2. some mortals die

3. ∴ some men die

1. no fish is human

2. some animals are
fish

3. ∴ notall animals are
human

Quantifiers!

I The linguistic name for words like “some”,
“all”, “every”, “no”, “many”, “most”, “five”,
is quantifier.

I So we’ll call our binding operators quantifiers.

I What should they look like? (doesn’t really
matter)

I What should they mean? (vital)

An example

1. all unicorns are horn-bearers

2. all horn-bearers are dangerous

3. ∴ some unicorns are dangerous

This is a valid inference in Aristotelian logic, but
how can it be when there are no unicorns?

Forall and exists

I (∀x)p(x)
True iff every x ∈ U satisfies p(x).
False iff some x ∈ U falsifies p(x).

I (∃x)p(x)
True iff some x ∈ U satisfies p(x).
False iff every x ∈ U falsifies p(x).

I (∃x)p(x) ≡ ¬(∀x)¬p(x)

I (∀x)p(x) ≡ ¬(∃x)¬p(x)

I “infinite ∧” and “infinite ∨”

Other quantifiers are possible

I (!x)p(x) = there is at most one x making p(x)
true

I (∃!x)p(x) = there is exactly one such x

I (∀1x)p(x) = ((∀x)p(x)) ∧ ((∃x)p(x))

I Some strictly increase the power of the logic,
given equality, these don’t.

A semantic view

I Think of {x ∈ U|p(x)}.
I A quantifier makes an assertion about this set.

I ∀ : it’s U
I ∃ : it isn’t empty

I 6 ∀ : it’s not U
I 6 ∃ : it is empty

I ∃! : it has exactly one element

Syntax of terms

I if x is a variable, x is a term.

I if f is a function symbol of arity n and t1, . . . ,
tn are terms, then f (t1, . . . , tn) is a term.

I There are no other terms.

I Writing a function infix makes no difference:
x + 1 and +(x , 1) are the same term.

Semantics of terms

I We need to know what the universe U is.

I We need an interpretation I of the function
symbols, such that if f is a function symbol of
arity n, I (f) : Un → U .

I We need an assignment V mapping variables
to U .

I I’ll use M() abbreviating M[I ,V]().

I M(x) = V (x)

I M(f (t1, . . . tn)) = I (f)(M(t1), . . . ,M(tn))

Syntax of sentences

I if p is a predicate symbol of arity n and t1, . . . ,
tn are terms, then p(t1, . . . , tn) is a(n atomic)
sentence. There are no other atomic sentences.

I Infix is OK; x > 0 and > (x , 0) are the same.

I if φ and χ are sentences, then ¬φ, φ ∧ χ,
φ ∨ χ, φ→ χ, φ↔ χ are sentences.

I We could also allow other propositional
connectives.

I if x is a variable and φ is a sentence, then
(∀x)φ and (∃x)φ are sentences.

I We could also allow ∀1 and (if = is part of our
logic) ! and ∃!.

Semantics of sentences

I Our interpretation must also interpret the
predicate symbols, such that if p is a predicate
symbol of arity n, and B = {⊥,>},
I (p) : Un → B .

I M(p(t1, . . . , tn)) = I (p)(M(t1), . . . ,M(tn))

I M(¬φ) = ¬M(φ)

I M(φ ∧ χ) =M(φ) ∧M(χ)

I ∨, →, ↔ similar. On the left, the operator is
part of the syntax, on the right, it’s a truth
function.

Semantics of quantified sentences

I Define (x 7→ v)f to be
λy .if y = x then v else f (y). That is,
(x 7→ v)f agrees with f except at x , where it’s
v .

I M[I ,V]((∀x)φ) = for all u ∈ U
M[I , (x 7→ u)V](φ).

I M[I ,V]((∃x)φ) = there is some u ∈ U such
that M[I , (x 7→ u)V](φ)

But what about the unicorns?

1. (∀x)u(x)→ h(x)

2. (∀x)h(x)→ d(x)

3. ∴ (∀x)u(x)→ d(x) does follow, but
(∃x)u(x) ∧ d(x) does not.

Free, bound, open, closed
I An occurrence of a variable is bound iff it is in

the scope of a quantifier.
I We say the variable occurrence right after ∀ or
∃ is a binding occurrence.

I An occurrence of a variable is free iff it is not
in the scope of any quantifier.

I p(x) ∧ (∃x)q(x) contains a free occurrence, a
binding occurrence, and a bound one, in that
order.

I A sentence is open iff it contains at least one
free variable occurrence.

I A sentence if closed iff every variable
occurrence is a binding or bound one.

Satisfaction and validity

I Given an interpretation I , an assignment V
satisfies φ iff M(φ) is true.

I φ is satisfiable under I iff there is some
assignment V that satisfies φ.

I φ is satisfiable iff φ is satisfiable under some I .

I φ is valid under I iff every assignment V
satisfies φ.

I I is then said to be a model of φ.

I φ is valid iff it is valid under every I .

Prenex Normal Form

A formula is a prenex formula (or in prenex form) iff
it is of the form Q1x1 . . .QnxnB where B is a
formula with no quantifiers, n ≥ 0, x1, . . . , xn are
variables, and Qi ∈ {∀,∃} for 1 ≤ i ≤ n.
It helps to replace p ↔ q by (p → q) ∧ (q → p).

Getting there, 1

I An atomic sentence is in prenex form.

I (∀x)φ and (∃x)φ simply add one more
quantifier on the left of the prenex form of φ.

I We want to “bubble quantifiers up” over
connectives.

I For ¬φ, let Q1x1 . . .QnxnB be the prenex form
of φ. Define ∀ = ∃ and ∃ = ∀. Then
Q1x1 . . .Qnxn¬B is the prenex form of ¬φ.

I ∧ and ∨ are left as an exercise.

Getting there, 2

I ((∃x)A)→ B ≡ (∀x)(A→ B) if x is not free
in B ; if it is, rename x first.

I A→ ((∃x)B) ≡ (∃x)(A→ B) if x is not free
in A; if it is, rename x first.

I ((∀x)A)→ B ≡ (∃x)(A→ B) if x is not free
in B; if it is, rename x first.

I A→ ((∀x)B) ≡ (∀x)(A→ B) if x is not free
in A; if it is, rename x first.

Skolem functions

Warning: this makes sense, and I got used to it
pretty quickly, but it’s not like the other
syntax-driven things we’ve done.
It turns out to be simpler to only have to deal with
one kind of quantifier. If you’ve heard of the axiom
of choice, it’s rather like that. Suppose we have
(∀x)(∃y)x > y . If that’s true, then for any x , there
is at least one y such that x > y , and we can let
s(x) be any such y . So we can say (∀x)x > s(x).
The arguments of a Skolem function are the
universally quantified variables enclosing the
existential quantification it replaces.

Clausal form

I A first-order literal is either an atomic sentence
or the negation of an atomic sentence.

I A first-order clause is a set of first-order literals.

I A first-order sentence in clausal form is a set of
clauses.

I Convert to prenex form, Skolemise, then
convert to clausal form just like propositional
calculus.

I All remaining variables are universally
quantified.

Propositional resolution

Resolution is the inference rule
from A ∪ {p} and B ∪ {¬p} infer A ∪ B .
It generalises (p → q) ∧ p → q.
We could use this on first-order clauses, if it weren’t
for the variables.

Unification

I Given two atomic sentences, we want to see if
we can find values for variables that make them
the same.

I Take p(t1, . . . , tm) and q(u1, . . . , un). If p 6= q
or m 6= n, those things are not variables, so we
can’t make them the same, fail. Otherwise,
solve {t1 = u1, . . . , tn = un}.

I The empty set of equations is solved.

I Otherwise, remove any t = u from the set.

Unification 2

I If t and u are both variables, if they are not the
same, replace one by the other.

I If t is a variable and u is not, fail if t occurs
inside u, otherwise replace t by u everywhere.

I If u is a variable and t isn’t, similar.

I If t = f (v1, . . . , vm) and u = g(w1, . . . ,wn),
fail if f 6= g or m 6= n, otherwise add
{v1 = w1, . . . , vn = wn} to the set of equations.

First-order resolution
I From a clause A ∪ {p, q} infer A′ ∪ {p′} if you

can make p = q = p′ by unification.
(FACTORING)

I From clauses A ∪ {p}, B ∪ {¬q} infer A′ ∪ B ′

if you can make p = q by unification.
(RESOLUTION)

I If you reach an empty clause you have found a
contradiction.

I Any first-order problem that has a (dis)proof
has a resolution (dis)proof.

I You need a strategy for deciding which
factorings and resolutions to do, but successful
resolution provers exist.

Completeness and Decidability

If a formula in first-order logic is valid, it has a finite
proof.
But validity is not decidable. Given a falsifiable
formula, a proof procedure may loop forever.

Model existence

A set of formulas Γ is consistent if there is a
formula A such that C1, . . . ,Cm → A is not provable
for any C1, . . . ,Cm ⊆ Γ.
The basic idea here is that you can prove anything
from a falsehood, so if you can’t prove everything,
you’re not crazy.
If a set of formulas is consistent, it is satisfiable.
If a set of formulas is satisfiable, it is consistent.

Löwenheim-Skolem theorem

If a first-order sentence is satisfiable in some
interpretation, then it is satisfiable in an
interpretation where U is at most countably infinite.
That is to say, U has no more elements than there
are natural numbers. In particular, there can be no
first-order sentence that is true of the real numbers
and false of anything with smaller cardinality.

Herbrand Universe

I If a formula has no constant symbols, add one.

I The Herbrand Universe H is the set of terms
you get by pasting functions together in all
possible ways, with no variables.

I If a formula in clausal form has any model, it
has a model where U = H.

I This is exploited by theorem provers, Prolog,
Datalog.

What we still cannot say

(∀p)(p(0) ∧ (∀n)p(n)→ p(n + 1))→ (∀n)p(n)
In first-order predicate calculus, variables may only
stand for elements of U , not for functions or
predicates.
In second-order predicate calculus, variables may
also stand for (first-order) functions and predicates.
We need this to talk about the real number system
R.
In higher-order predicate calculus, the arguments of
functions and predicates may themselves be
functions and predicates.

