
COSC410 Logic for AI
Datalog

Richard A. O’Keefe

26 May 2016

Key Topics

I Unary predicate calculus

I Decidable fragments of first-order logic

I Horn clauses

I Pure Datalog and its semantics

I Adding arithmetic

I Negation and stratification

Unary Predicate Calculus

I terms are constants and variables

I there are only unary predicates

I except that = may be allowed.

I usual connectives

I usual quantifiers

Löwenheim-Skolem 1915

I If φ is a sentence in unary predicate calculus
that has a model, then it is true in some
interpretation whose domain has at most 2p.v
members, where p is the number of predicate
symbols in φ and v the number of variables.

I This basically works because there are no binary
predicates to mix up two different variables.

I There are only finitely many such
interpretations (up to isomorphism), so
exhaustive search is possible.

Why does this matter?

I UPC is perfectly suited to expressing type
hierarchies.

I Every chess piece is black or white but not
both. Every chess piece is a pawn, a rook, a
knight, a bishop, a king, or a queen, and
cannot be any two of these. Some birds are
fliers. Some fish are fliers. Some snakes are
fliers. Not all fliers are breathers. And so on.

I We’ll see this kind of stuff in the last lecture.

More generally

I Even unifiability is undecidable in 2nd-order
logic

I 1st-order predicate calculus is semi-decidable

I propositional calculus is decidable

I These are not the only possible logics!

I Since UPC is decidable, it makes sense to look
for other decidable fragments of 1st-order logic.

Kowalski form for clauses

I Given a clause {P1, . . . ,Pm,¬N1, . . . ,¬Nn},
I it’s an implication, so write it as

I P1, . . . ,Pm ← N1, . . . ,Nn.

I Since ASCII lacks ←, use :-.

I black(X), white(X) :- chess piece(X).

I On the left, the head, on the right, the body.

I Write empty body as true.

Horn clauses

I Named for Alfred Horn, 1951.

I Any clause with at most one positive literal.

I With exactly one positive literal, called a
definite clause.

I If m = 1 and n = 0, sometimes called a fact.

I If m = 1 and n > 0, sometimes called a rule.

I If m = 0, called a goal or query.

A model result

Every set of definite clauses Π has a unique minimal
model M . An atomic formula A is implied by Π if
and only if A is true in M .
Kowalski and van Emden, 1976.

Are we there yet?

I A set of propositional Horn clauses can be
solved in linear time.

I A set of first-order Horn clauses is still
undecidable because that’s a Turing-complete
programming language called (pure) Prolog.

I The proof is by giving a simple method of
converting any Turing machine to a set of
definite clauses and an initial state to a query;
finding out whether the query is satisfiable is as
hard as running the machine.

Following the lead of unary predicate
calculus

A Datalog database is a collection of definite
clauses where

I Terms are just constants and variables, there
are no function symbols with arity > 0.

I Every variable that occurs in the head must
occur in the body.

Remember this for the exam.

Example

father(F, C) :- parent(F, C), male(F).
mother(M, C) :- parent(M, C), female(C).
child(C, P) :- parent(P, C).
son(C, P) :- child(C, P), male(C).
daughter(C, P) :- child(C, P), female(C).
ancestor(A, D) :- parent(A, D).
ancestor(A, D) :- parent(A, P), ancestor(P, D).

Databases

I Ignoring NULL, a table in a relational database
is just a collection of atomic sentences about
individuals. That is, it’s a collection of facts.

I In Datalog, the extensional data base is a set
of facts. That is, clauses with an empty body.
A clause with an empty body cannot have
variables in the head.

I The intensional data base is a set of rules to be
used to infer additional facts. Think of it as
defining views, except that the rules can be
recursive.

One-step inference

T ↑ (e) = {h|(h← b1, . . . , bn) is an instance of a
rule in the intensional data base
∧b1 ∈ e ∧ · · · ∧ bn ∈ e} ∪ e.
That is, for each rule, for each way of matching the
elements of the body with facts currently known,
add the corresponding instance of the head to the
new facts. This can be done in O(r .|e|n) time
where n is the number of atoms in the longest body
and r is the number of rules.

Complete inference

I T ↑0 (e) = e

I T ↑k+1 (e) = T ↑ (T ↑k (e))

I T ↑ω (e) = limk→∞ T ↑k (e)

This is the general semantics for pure Horn clause
programs. For Datalog, there is always a finite k
such that T ↑ω (e) = T ↑k (e) because there are
only finitely many possible facts.

Forward vs backward chaining

I Forward chaining: when you find out the body
is true, conclude the head. This preserves
truth.

I Backward chaining: to try to prove an instance
of the head, try to prove each element of the
body. This preserves relevance to our goal.

I Logic programming languages use backward
chaining.

I For data bases, we don’t want to prove useless
facts or waste time exploring things that can’t
be true.

Enriching the language: arithmetic
We can allow arithmetic definitions (Var is expr)
and comparisons (e1 {<,≥, >,≤,=, 6=} e2) in the
body of a rule as long as

I definitions are evaluated only after all the
variables in the expr have been bound by an
ordinary literal or another definition, and

I comparisons are evaluated only after all the
variables in their expressions have been bound
by ordinary literals or by definitions.

That is, there has to be a partial order on the
literals in the body of a rule that uses data flow to
ensure that arithmetic never encounters a variable
that doesn’t have a value yet.

Enriching the language: negation

I Considered as logic, putting a negation in the
body of a rule is equivalent to adding a
disjunction in the head.

I But the semantics we’ve given doesn’t handle
disjunctions in the head.

I We don’t want the Barber paradox in our data
base, so we don’t want any recursive negations.
And we don’t want negations to solve for
variables.

Banishing barbers: stratification

A program is stratified iff the set of predicate
symbols is divided into strata S0,S1, . . .Sz such that

I S0 contains the extensional predicate symbols

I Si+1 contains intensional predicate symbols
defined by rules in which the plain atoms
mention predicate symbols in

⋃i+1
j=0 Sj and the

negated atoms mention predicate symbols in⋃i
j=0 Sj (i.e., not in Si+1).

This means there can be no negation loops.
Remember the constraints for negation too.

Banishing barbers: binding

Just as arithmetic comparisons are used as filters to
reject combinations found by joining positive atoms,
so negated atoms are used as filters. The data flow
partial order must be extended to include negated
atoms: a negative atom may not be checked until
after all of the variables in it have been filled in by
positive atoms or arithmetic definitions.

Stratified semantics

I define Ti ↑ (e) to be the one step inferences
using rules for predicates in stratum Si .

I M0(e) = e

I Mi+1(e) = Ti+1 ↑ω (Mi(e))

That is, we start with the given facts, and then
derive all the consequences from each stratum, one
at a time.

A semantics is not an interpreter

I All this stuff about T ↑ω and Mz tells us that a
Datalog program has a meaning, what the
meaning is, and that the meaning can be
derived in finite time.

I That is not how Datalog is actually
implemented. That involves backwards
chaining, tabling (= memoisation = caching
results so they’re not recomputed), incremental
updates, Magic Sets, and other cleverness we
lack time to cover.

Comparison with relational algebra

I Datalog can’t do relational division.

I Relational algebra can’t do recursion.

I Datalog is based on 2-valued logic.

I SQL is based on an inconsistent 3-valued logic.

I I find Datalog much easier to get correct.

Next week

We’ll be looking at Description Logic and the
Semantic Web. There are overlaps with this week’s
topic. . .

