
COSC410 Logic for AI
Description Logics and the Semantic Web

Richard A. O’Keefe

2 June 2016

Key Topics

I Hiding the arguments

I The calculus of binary relations

I Individuals, Concepts, Rôles

I The Terminology Box and the Assertion Box

I What a DL is good for

I AL

I RDF

I SPARQL

Hiding the arguments

I Computer programs are often littered with
variables whose main purpose is to get
information from one place to another.

I A craft technique in advanced programming
languages is to develop macros (Lisp), source
transformers (Prolog), or combinators (Haskell,
Clean) to “hide the plumbing”.

I Example: p −→ q, r , s is Prolog for
∀S0∀S1∀S2∀S(p(S0, S)←
q(S0, S1) ∧ r(S1, S2) ∧ s(S2, S)).

Hiding and unary predicate calculus

I Instead of writing P(x) write P .

I All the predicate symbols in a formula will have
the same variable as argument.

I A sentence is (∀x)φ so we don’t need to write
x .

I We can treat a UPC formula as if it were
propositional.

Predicates and sets, 1

I What is the difference between a predicate and
a set?

I One’s weaselly told, the other’s stoatally
different.

I That is, not much.

Predicates and sets, 1

I What is the difference between a predicate and
a set?

I One’s weaselly told, the other’s stoatally
different.

I That is, not much.

Predicates and sets, 1

I What is the difference between a predicate and
a set?

I One’s weaselly told, the other’s stoatally
different.

I That is, not much.

Predicates and sets, 2

Logic Set Assertion
P(x) x ∈ P
⊥ ∅
> U
P P

P ∧ Q P ∩ Q
P ∨ Q P ∪ Q
¬P U \ P P ⊆ ∅

P → Q Q ∪ (U \ P) P ⊆ Q
P ↔ Q (P \ (Q \ P)) ∪ (Q \ (P \ Q)) P = Q

Binary Relations and Regular Expressions

I A binary relation xRy can be thought of as a
predicate of two arguments R(x , y) or as its
graph, the set {(x , y)|xRy}.

I A language L can be thought of as a set L1 of
strings, or as a binary relation
αL2ω ↔ ∃µ(α = µ _ ω ∧ µ ∈ L1).

I There’s a rich set of operations on binary
relations.

Binary Relations

I I = {(x , x)|x ∈ U}
I P= = {(x , x)|P(x)} when P is a unary

predicate

I P r = {(y , x)|(x , y) ∈ P} — converse/opposite

I P .Q = {(x , y)|∃z((x , z) ∈ P ∧ (z , x) ∈ Q)}
I P? = P ∪ I
I P∗ = I ∪ P+ reflexive transitive closure

I P+ = P .P∗ transitive closure

Regular expressions

I Let c ∈ Σ be a character in a character set.

I Define ĉ = {(cω, ω)|ω ∈ Σ∗}
I That is, sĉr iff s begins with c and the rest of
s is r .

I The regular expression /(b|br)ea*ds?/ is the

binary relation (b̂ ∪ b̂.r̂).ê.â∗.d̂ .ŝ?

I The algebra of binary relations generalises
regular expressions.

Individuals

I An individual is (a name for) a single thing.

I OWL also calls them individuals.

I Logic calls them constant(symbol)s.

I Description logics do not make the Unique
Name Assumption. john key and andrew little
could well name the same thing, as far as a DL
is concerned, unless there is evidence against it.

Concepts

I A concept is (a name for) a property of things.

I OWL calls them classes.

I Logic calls them unary predicate(symbol)s.

I Description logics do not make the Closed
World Assumption. If we cannot show that
andrew little ∈ prime ministers, a DL won’t
conclude that he isn’t, unless there is evidence
against it.

Rôles

I A rôle is (a name for) a relation between pairs
of things (like father-of) or a relation between
things and values (like has-name).

I OWL calls them properties.

I Logic calls them binary predicate(symbol)s.

I Description logics do not make the Closed
World Assumption. If we cannot show that
(richard,40)∈ age, a DL won’t conclude that
he isn’t. Maybe someone can have two ages?

Notations and semantics

I DLs use different notation from standard logic.

I Web notations are different again.

I The semantics isn’t really different.

I We are using restrictions of logic in order to
get efficient reasoning.

I We are giving up expressiveness to get
decidability.

TBox and ABox
I The terminology box (TBox) holds general

knowledge about concept hierarchies.
I The assertion box (ABox) holds facts about

individuals.
I The split has to do with what kinds of

reasoning are done and what the algorithms
are, and also with when information becomes
available.

I (has-appendicitis → has-abdominal-condition)
is a general rule you might know ahead of time
and “compile”

I (anthony : has-appendicitis) is a specific fact
you might learn at run time and wish to derive
consequences of.

Original setting

I There is a general reasoning program.

I It delegates some tasks to a specialised module
which always terminates, hopefully fast.

I Some knowledge is used over and over again,
so we’d like to pre-check and “compile” it.

I Some facts are added during a run, possibly by
the general program itself.

I I’m reminded of “Satisfiability Modulo
Theories” solvers, same delegation to
specialised modules idea.

What can a DL do for us?

I Concept Subsumption
Is C v D definitely true, definitely false,
unknown?

I Satisfiability
Is C v ⊥ true, false, or unknown?

I Concept Equivalence
C ≡ D iff C v D ∧ D v C

I Disjointness
C and D are disjoint iff C u D v ⊥

What can a DL do for us (2)?

I Concept classification
Form an explicit hierarchy from all mentioned
concepts.

I Consistency checking
Is x ∈ C ∧ x /∈ C possible?
Is (x , y) ∈ r ∧ (x , y) /∈ r possible?
Could a given TBox ever have a non-empty
ABox?

What can a DL do for us (3)?

I Classify individuals
Is x ∈ C definitely true, definitely false,
unknown?
Take all assertions x ∈ Ai and test whether
A1 u · · · u An v C .

I Find individuals
Given C , find all individuals x for which x ∈ C .

I Description (realisation)
Given an individual and a set of concepts, find
the most specific concept the individual
belongs to.

AL: a description logic

Concepts can be

I >
I ⊥
I A — atomic concepts (names)

I ¬A — negated atomic concepts

I C u D — intersection

I ∃r .> – limited existential

I ∀r .C — value restriction

Not in AL

I No union (t)

I Negation only applies to atomic concepts

I There is no way to construct rôles

Extensions of AL

Systematic naming: AL[U][E][N][C].

I U : union C t D is allowed

I E : full existential ∃r .C is allowed

I N : number restrictions ≥ nR and ≤ nR are
allowed

I C : general complements ¬C are allowed

An example

TBox:
Person v ∀ tends.Pet
∃ tends.> v Person
Person u Pet v ⊥
Dog v Pet
Bird v Pet
Dog u Bird v ⊥
Male u Female v ⊥

ABox:
richard ∈ Person u Male
lily ∈ Dog u Female
jazzie ∈ Bird u Female
perry ∈ Bird u Male
(richard,lily) ∈ tends
(richard,jazzie) ∈ tends
(richard,perry) ∈ tends

Resource Description Framework

I An RDF document is basically a set of triples.

I An (Attribute ◦ Object ≡ Value) store was
built into an old AI language called SAIL.

I A rôle fact in a DL, (x , y) ∈ r , is written x r y.

I Think of x and y as nodes in a directed graph
with an edge labelled r linking them. (Graph
data bases. . .)

Naming in RDF

I subjects, predicates, and objects can be URIs.

I subjects and objects can be “blank nodes”.

I objects can be literals (numbers or strings).

URIs

I Mostly, they’re namespaced strings.

I Some of them have semantics defined in public
documents, notably rdf and foaf.

I They always stand for the same thing (are rigid
designators).

Blank nodes

Blank nodes are like existentially quantified
variables.
:foobar will refer to the same node throughout an

RDF graph, but it doesn’t have an absolute identity
that can be referred to elsewhere.
:m mother of simpsons:bart.
:m hair colour “blue”.

RDF Schema is a DL

I C rdf:type rdf:class. C is a concept.

I r rdf:type rdf:property. r is a rôle.

I x rdf:type C . x ∈ C .

I C rdfs:subClassOf D. C v D

I p rdfs:subPropertyOf q. p v q

I p rdfs:domain C . ∃r .> v C

I p rdfs:range C ∃>.r v C

Example

@base <http://example.org/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix schema: <http://schema.org/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix wd: <http://www.wikidata.org/entity/> .
@prefix db: <http://dbpedia.org/resource/> .
wd:Q12418

dcterms:title ”Mona Lisa” ;
dcterms:creator db:Leonardo da Vinci .

Example, continued

<bob#me>
a foaf:Person ;
foaf:knows <alice#me> ;
schema:birthDate ”1990-07-04”ˆˆxsd:date
foaf:topic interest wd:Q12418 .

[] foaf:topic interest [
dcterms:title ”RDF” ;
dcterms:creator <http://www.w3c.org>] .

Triple Stores

I A triple store is a specialised data base.

I It accepts (s,p,o) and (s,p,v) triples.

I You can enumerate partial matches.

I RDFS is a description logic.

I We’d like queries to succeed if they are true,
not just if they were stored.

I Some triple stores do this, e.g., ClioPatria.

SPARQL

I A rich SQLish query language for RDF.

I SELECT [DISTINCT] vars WHERE { triples }
I CONSTRUCT { triples } WHERE { triples }
I In a WHERE part, rôles can be r, ˆr (inverse),

r1/r2 (composition), r1|r2 (or), r∗, r+, r?, (r),
. . .

I :richard (:father|:mother)/:brother ?unc asks
for my uncles.

I This is richer than RDF can express.

SPARQL, continued

I SELECT may use aggregate expressions:
COUNT, SUM, MIN, MAX, SAMPLE

I Groups are defined using GROUP BY vars

I and filtered using HAVING (expression).

I You can sort with ORDER BY vars.

I It’s not a logic, it’s a query language. We
never ask about subsumption between queries,
we never infer queries from queries, etc.

