COSC410 Logic for Al

Description Logics and the Semantic Web
Richard A. O'Keefe

2 June 2016

Key Topics

» Hiding the arguments

» The calculus of binary relations

» Individuals, Concepts, Roles

» The Terminology Box and the Assertion Box
» What a DL is good for

» AL

» RDF

» SPARQL

Hiding the arguments

» Computer programs are often littered with
variables whose main purpose is to get
information from one place to another.

» A craft technique in advanced programming
languages is to develop macros (Lisp), source
transformers (Prolog), or combinators (Haskell,
Clean) to “hide the plumbing”.

» Example: p — q, r, s is Prolog for
VS()VSlVSQVS(p(So, S) —
q(So0, S1) A r(S1, 52) As(S2, 5)).

Hiding and unary predicate calculus

Instead of writing P(x) write P.

All the predicate symbols in a formula will have
the same variable as argument.

A sentence is (Vx)¢ so we don’t need to write
X.

We can treat a UPC formula as if it were
propositional.

v

v

v

v

Predicates and sets, 1

» What is the difference between a predicate and
a set?

Predicates and sets, 1

» What is the difference between a predicate and
a set?

» One's weaselly told, the other’s stoatally
different.

Predicates and sets, 1

» What is the difference between a predicate and
a set?

» One's weaselly told, the other’s stoatally
different.

» That is, not much.

Predicates and sets, 2

Logic Set Assertion
P(x) xeP
1 %}
T U
P P
PAQ PNQ
PV @ PUQ
-P U\P PCo
P— Q QU U\ P) PCQ
P Q (PAQ\PNUQ\(P\Q) P=0Q

Binary Relations and Regular Expressions

» A binary relation xRy can be thought of as a
predicate of two arguments R(x, y) or as its
graph, the set {(x, y)|xRy}.

» A language £ can be thought of as a set £; of
strings, or as a binary relation
alow <> pla=p ~wAp € Ly).

» There's a rich set of operations on binary
relations.

Binary Relations

v

T ={(x,x)|x e}

» P= = {(x,x)|P(x)} when P is a unary
predicate

» P" = {(y,x)|(x,y) € P} — converse/opposite

» P.Q = {(x,y)|3z((x,z) € PA(z,x) € Q)}

» PP=PUZ

» P* =T U P™ reflexive transitive closure

» PT = P.P* transitive closure

Regular expressions

Let ¢ € X be a character in a character set.
Define ¢ = {(cw,w)|w € ¥}

That is, sCr iff s begins with ¢ and the rest of
Sisr.

v

v

v

The regular expression /(b|br)ea*ds?/ is the
binary relation (bU b.7).6.5*.d.§’

The algebra of binary relations generalises
regular expressions.

v

v

Individuals

» An individual is (a name for) a single thing.

» OWL also calls them individuals.

» Logic calls them constant(symbol)s.

» Description logics do not make the Unique
Name Assumption. john_key and andrew_little

could well name the same thing, as far as a DL
is concerned, unless there is evidence against it.

Concepts

v

v

v

v

A concept is (a name for) a property of things.
OWL calls them classes.
Logic calls them unary predicate(symbol)s.

Description logics do not make the Closed
World Assumption. If we cannot show that
andrew_little € prime_ministers, a DL won't
conclude that he isn't, unless there is evidence
against it.

Roles

v

A réle is (a name for) a relation between pairs
of things (like father-of) or a relation between
things and values (like has-name).

OWL calls them properties.
Logic calls them binary predicate(symbol)s.

Description logics do not make the Closed
World Assumption. If we cannot show that
(richard,40)€ age, a DL won't conclude that
he isn't. Maybe someone can have two ages?

Notations and semantics

DLs use different notation from standard logic.

v

v

Web notations are different again.
The semantics isn't really different.

v

We are using restrictions of logic in order to
get efficient reasoning.

\4

We are giving up expressiveness to get
decidability.

v

TBox and ABox

>

The terminology box (TBox) holds general
knowledge about concept hierarchies.

The assertion box (ABox) holds facts about
individuals.

The split has to do with what kinds of
reasoning are done and what the algorithms
are, and also with when information becomes
available.

(has-appendicitis — has-abdominal-condition)
is a general rule you might know ahead of time
and “compile”

(anthony : has-appendicitis) is a specific fact
you might learn at run time and wish to derive
consequences of.

Original setting

» There is a general reasoning program.

» It delegates some tasks to a specialised module
which always terminates, hopefully fast.

» Some knowledge is used over and over again,
so we'd like to pre-check and “compile” it.

» Some facts are added during a run, possibly by
the general program itself.

» I'm reminded of “Satisfiability Modulo

Theories” solvers, same delegation to
specialised modules idea.

What can a DL do for us?

» Concept Subsumption
Is C C D definitely true, definitely false,
unknown?

» Satisfiability
Is C C L true, false, or unknown?

» Concept Equivalence
C=DiffCCDADLCC

» Disjointness
C and D are disjoint iff CM1D C L

What can a DL do for us (2)?

» Concept classification
Form an explicit hierarchy from all mentioned
concepts.

» Consistency checking
Is x € C A x ¢ C possible?
Is (x,y) € r A(x,y) ¢ r possible?
Could a given TBox ever have a non-empty
ABox?

What can a DL do for us (3)7

» Classify individuals
Is x € C definitely true, definitely false,
unknown?
Take all assertions x € A; and test whether
A m---MAnC C.
» Find individuals
Given C, find all individuals x for which x € C.

» Description (realisation)
Given an individual and a set of concepts, find
the most specific concept the individual
belongs to.

AL: a description logic

Concepts can be
» T
» L
» A — atomic concepts (names)
» A — negated atomic concepts
C M D — intersection
» Jdr. T — limited existential

v

» Vr.C — value restriction

Not in AL

> No union (L)
» Negation only applies to atomic concepts
» There is no way to construct réles

Extensions of AL

Systematic naming: AL[U][E][N][C].
» U : union CU D is allowed
» E : full existential 3r.C is allowed

» N : number restrictions > nR and < nR are
allowed

» C : general complements —C are allowed

An example

TBox: ABox:
Person C V tends.Pet richard € Person "1 Male
d tends. T C Person lily € Dog M Female
Person M Pet C | jazzie € Bird I Female
Dog C Pet perry € Bird ' Male
Bird C Pet (richard,lily) € tends
Dog M Bird C L (richard,jazzie) € tends

Male I Female C L (richard,perry) € tends

Resource Description Framework

An RDF document is basically a set of triples.

An (Attribute o Object = Value) store was
built into an old Al language called SAIL.

v

v

v

A role fact in a DL, (x,y) € r, is written x r y.

v

Think of x and y as nodes in a directed graph
with an edge labelled r linking them. (Graph
data bases. . .)

Naming in RDF

» subjects, predicates, and objects can be URISs.
» subjects and objects can be “blank nodes”.
» objects can be literals (numbers or strings).

URIs

» Mostly, they're namespaced strings.

» Some of them have semantics defined in public
documents, notably rdf and foaf.

» They always stand for the same thing (are rigid
designators).

Blank nodes

Blank nodes are like existentially quantified
variables.

_:foobar will refer to the same node throughout an
RDF graph, but it doesn’t have an absolute identity
that can be referred to elsewhere.

_:m mother_of simpsons:bart.

_:m hair_colour “blue”.

RDF Schema is a DL

C rdf:type rdf:class. C is a concept.

v

r rdf:type rdf:property. r is a role.
x rdf:type C. x € C.

C rdfs:subClassOf D. C C D

p rdfs:subPropertyOf q. p C g

p rdfs:domain C. dr. T C C

p rdfs:range C dT.r C C

v

v

v

v

v

v

Example

@base <http://example.org/> .
Oprefix foaf: <http://xmlIns.com/foaf/0.1/> .
Oprefix xsd: <http://www.w3.0rg/2001/XMLSchema#>
Oprefix schema: <http://schema.org/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
Oprefix wd: <http://www.wikidata.org/entity/> .
@prefix db: <http://dbpedia.org/resource/> .
wd: Q12418
dcterms:title " Mona Lisa” ;
dcterms:creator db:Leonardo_da_Vinci .

Example, continued

<bob#me>
a foaf:Person
foaf:knows <alice#tme> ;
schema:birthDate "1990-07-04" " “xsd:date
foaf:topic_interest wd:Q12418 .

[| foaf:topic_interest [
dcterms:title "RDF" ;
dcterms:creator <http://www.w3c.org>] .

Triple Stores

v

A triple store is a specialised data base.

v

It accepts (s,p,0) and (s,p,v) triples.

v

You can enumerate partial matches.

v

RDEFS is a description logic.

v

We'd like queries to succeed if they are true,
not just if they were stored.

v

Some triple stores do this, e.g., ClioPatria.

SPARQL

A rich SQLish query language for RDF.
SELECT [DISTINCT] vars WHERE { triples }
CONSTRUCT { triples } WHERE { triples }

In a WHERE part, réles can be r, “r (inverse),
r1/r2 (composition), r1|r2 (or), r*, r+, r?, (r),

v

v

v

v

richard (:father|:mother)/:brother ?unc asks
for my uncles.

v

v

This is richer than RDF can express.

SPARQL, continued

» SELECT may use aggregate expressions:
COUNT, SUM, MIN, MAX, SAMPLE

» Groups are defined using GROUP BY vars
» and filtered using HAVING (expression).
» You can sort with ORDER BY vars.

» It’s not a logic, it’s a query language. We
never ask about subsumption between queries,
we never infer queries from queries, etc.

