
COSC 410 Lecture 1

Classical Propositional Logic

Willem Labuschagne
University of Otago

2016

Introduction

COSC 410 is about the logic you need to know if you want to understand research in
artificial intelligence.

The best textbook introduction is still Genesereth and Nilsson (1987): Logical Founda-
tions of Artificial Intelligence, but there are no newer editions and so the book doesn’t
cover the exciting developments after 1987 that form the main focus of COSC410. As a
result we mention this textbook as an interesting source of additional reading only.

In the place of a suitable textbook, self–contained lecture notes will be provided on the
COSC410 coursework webpage a few days before the scheduled lecture. Treat these
notes as your textbook — read them, summarise them, scribble on them.

You should bring some paper and a pen to class in order to take additional notes and
do exercises. Exercises are of key importance and you should set aside a minimum of
12 hours per week for unsupervised study, i.e. doing exercises and reading the lecture
notes. (In general, budget two 7-hour working days per week for each paper you’re doing
and another two days per week for your project.)

At the start of lectures 2 – 9 a short quiz will be given, each worth 1%. There are also
two written assignments due on 21 March and 16 May, worth 11% each. Submit your
assignments either electronically as pdf files emailed to Willem or as hardcopy handed
in to Willem. As always, we expect scrupulous honesty – the assignments are meant to
be your own work.

For any questions related to lectures 1 through 9, come and see Willem, and for questions
about lectures 10 through 13, consult Richard O’Keefe.

1

Beady-eye agents

Why does one need to know some logic if one is interested in artificial intelligence?

AI is a very broad field and there are different ways to look at it. One perspective
regards AI as the study of artificial agents. Agents differ from rocks: instead of simply
enduring passively, agents respond to changes in their environment and take action to
produce further changes.

A very low-level example of such an agent is a thermostat, which senses changes in the
temperature of its environment and acts by increasing or decreasing the amount of heat
provided by a furnace, stove, or heat pump.

If one were content to work with low-level agents, one would not need to know anything
about logic. But what if one is interested in designing high-level agents that more closely
approximate humans?

The simplest type of high-level agent is the BDI agent, where B stands for “Belief”, D
for “Desire”, and I for “Intention”.

Every BDI agent has an internal representation of its environment. This representation
uses declarative sentences in some language. Such sentences are the agent’s beliefs.

Declarative sentences are the sort of sentence you would use to state a fact, for example:
“Sicily is an island”. A natural language such as English also has other kinds of sentences,
e.g. questions and commands. We will not be including non-declarative sentences like
questions in our study. Think of the communication between BDI agents as being
limited to stating what the agent believes. One can extend this to include speech acts
like requesting or commanding, but that makes everything much more complicated, so
we’ll stick to sentences used for informing other agents of what is believed.

The desires of an agent are its long-term goals or motivations (for example, to become
an All Black, or to visit Paris, or to learn how to grow prize-winning cucumbers).

The intentions of an agent are the shorter-term subgoals that act as stepping stones in
reaching the long-term goals.

When planning, an agent typically selects intentions that will carry it closer to realising
its desires. Of course, the plan needs to be realistic. This is where the beliefs come
in. If the agent has the desire to visit Paris, then a sensible plan might consist of the
intention to earn enough money for airfare to Paris. It would not be a good plan to form
the intention of walking there, since among the beliefs we would expect the agent to
possess would be the belief that there’s an ocean in the way. Beliefs record the agent’s
awareness of the constraints imposed by its environment.

Anyone who wants to work with BDI agents will need to know some logic in order to be
able to deal with the way the agent acquires and changes beliefs, and the ways in which
an agent may draw inferences from its beliefs.

2

Sometimes we may use the word “knowledge” instead of talking about “beliefs”. If
we talk about knowledge then we’re assuming that the agent’s information about its
environment is perfectly accurate. Knowledge is always true. As your own experience
will reveal, an agent doesn’t often have the guarantee that all the information it acquires
is accurate. So knowledge is a much more limited concept than belief. That means it’s
easier to work with, and, until halfway through the 20th century, logic used to focus
almost exclusively on knowledge. But in AI we can’t get very far if we insist that our
agents must have knowledge. For example, any agent having a sensor for vision will face
the possibility of being mistaken about an optical illusion.

Many of the recent developments in logic that we’ll be exploring were driven by this
transition from working with infallible knowledge (certainty) to working with defeasible
beliefs (uncertainty). The fact that beliefs may be defeated, i.e. may turn out to be
false, causes all sorts of interesting problems for agents (especially us humans). Should
a convicted murderer be hanged when we lack certainty because an element of doubt
remains? How much certainty do we require before we act in a particular way? How
sure must we be that Sally will say yes before we ask her to the dance? As you can see,
we are dealing with life’s central mysteries here :-)

Let’s return to the question of what a BDI agent does with its beliefs. We saw that
beliefs are used for planning, in other words the agent thinks with the help of the beliefs.
So one of the things we study in AI is the thinking of artificial agents. But isn’t thinking
the sort of thing best left to psychologists?

Well, it’s true that cognitive psychologists study thinking. But we can draw a subtle
distinction between the interest psychologists have in thinking and the interest a logician
has in thinking. As the philosopher John Pollock said:

Psychology is about thinking both when it goes wrong and when it goes right.
Logic is about what it is for thinking to go right.

So logic is the science of how to think. Some people object to saying that an artificial
agent thinks. All right, then — instead of “think” we can say that an agent “transforms
information” and that logic is the study of sensible ways to transform information as
opposed to careless or crazy ways to do so.

One important way of transforming information is inference, the movement from a given
piece of information (your premiss) to the reasonable expectations you may form on the
basis of your premiss (your conclusions). The different kinds of logic we shall encounter
are different partly because they impose different constraints on this movement from
premiss to conclusion. Today’s lecture will introduce the very strict constraint giving us
classical logic.

3

Syntax versus semantics: two kinds of representation

Imagine that an agent wants to achieve a goal. Some part of the universe is relevant to
the agent’s goal and the rest is not. For example, an agent sitting in his car and waiting
to cross an intersection is concerned just with the small system consisting of the traffic
lights and the oncoming traffic (and perhaps the nearby pedestrians, passing dogs, and
any falling aeroplanes that may impact the intersection). For the purposes of deciding
whether to cross an intersection in Dunedin, political events in the Middle East are an
irrelevant distraction, as are the cost of education in Denmark and whether to buy a
puppy. Let’s call the small relevant part of the universe the system of interest.

In most cases, the agent’s planning can’t really get started unless he has some idea what
the state of the system currently is. So the key question is: “What are the facts?”

What information would the driver waiting at an intersection need? He wants the
answers to questions such as

• Is the traffic light red?

• Is the oncoming car stopping?

Without answers to these questions, driving across the intersection would be an act of
recklessness, not rationality.

The state of a system is made up of answers to all the questions that are relevant to the
agent’s goal. The answers will typically change as time passes and the system changes its
state. More generally, the list of questions that are relevant may change as the agent’s
intention changes.

It is quite commonly the case that the agent may not be able to find answers to all the
relevant questions, so we have the interesting situation of agents having to plan with
limited information. We’ll talk more about this aspect in future lectures.

An agent can represent information about a state of the system in two ways.

A symbolic (or syntactic) representation uses text, or more specifically uses declarative
sentences of some language, i.e. beliefs. We might say or write that the light is red, that
the oncoming car is not stopping, or that a passing poodle has gone mad and is biting
a policeman in the middle of the road. We call this a symbolic representation because
it uses words built up from symbols. Or we could call it a syntactic description since a
language is defined by a grammar and syntax is another word for grammar. The main
point is that it uses language.

A semantic representation doesn’t use language. Instead the information is provided by
means of a mental image. In the case of vision, we form images that are pictures or
stylised pictures (e.g. diagrams or maps). A chess-player pondering his next move will
visualise a chessboard, or at least the relevant part of the chessboard. In the case of
taste or smell, the mental image is harder to describe, which incidentally shows that it

4

is non-verbal. Can you recognise what a peach smells like? Then that is because you
have an olfactory (smell-based) image against which to compare new smells.

The semantic representations (mental images) are what the symbolic representations
(sentences) are about.

In our human heads, we do both kinds of representation as patterns of neural excitation.
Some patterns produce bits of language (symbols). Others give us images, and these
form the semantics of the language. It’s hard to talk about such neural patterns, so we
won’t try to describe the neuroscience.

In logic the symbolic representations of information are done using a formal language
rather than a natural language like English, because it is simpler. The semantic rep-
resentations will be done not by drawing pictures or maps but by using mathematics,
because we want to be able to prove things. Our mathematical descriptions of states will
start off being quite simple and later will become more interesting and complex.

To summarise: there are two ways to encode information about a state. The agent can
describe the state by making assertions about the features of the system in a language,
and for the first 9 lectures we will use propositional languages for this purpose. Alterna-
tively we may use a mathematical way to represent the state, giving us a subsymbolic
idealisation of the analog images that provide the semantics in our human brains.

Let’s look more closely at the two kinds of representation by means of an example.

The traffic system

Imagine that you are waiting in your car at an intersection for an opportunity to safely
cross. To keep things very simple, let’s suppose that only two features of the system are
relevant:

• Is the traffic light currently red for traffic crossing from your left and right?

• Is the oncoming cross traffic going to stop?

Focusing on these two features allows us to build a simple language for symbolically
representing information about the traffic system.

Remember the agent asks “What are the facts?”

The two assertions “The traffic light for cross traffic is red” and “The oncoming car is
stopping” are called atomic sentences because they express elementary facts that might
hold for our system of interest. To save us the tedium of writing out these atomic
sentences repeatedly, let us abbreviate them. For the rest of this lecture, we use p to
abbreviate “The traffic light is red” and q for “The oncoming car is stopping”.

5

As a further simplification we assume that the agent will build up other sentences from
the atomic sentences in a few restricted ways, using the words:
not, and, or, if ... then, and if and only if.

We abbreviate these connectives by symbols as follows:

Word Symbol Connective Name
not ¬ negation
and ∧ conjunction
or ∨ disjunction

if ... then → the conditional
if and only if ↔ the biconditional

A sentence such as “The traffic light is not red or the oncoming car is stopping” can
now be represented by combining symbols to give ¬p ∨ q.

We have to be a bit careful not to have ambiguous strings, so will use parentheses where
necessary. Thus ¬p ∨ q could conceivably mean either ¬(p ∨ q) or (¬p) ∨ q, where the
parentheses indicate the scope of the negation. For simplicity, let’s agree that negation
binds the shortest sentence following it, so that ¬p ∨ q would unambiguously indicate
(¬p) ∨ q. We are now ready to say what a propositional language is.

Definition 1 (Propositional language) Let A be a nonempty set, called the set of atomic
sentences. The propositional language LA generated by A is the set of sentences defined
recursively as follows:

• If α ∈ A then α is a sentence of LA

• If β and γ are sentences of LA, then so are (¬β), (β ∧ γ), (β ∨ γ), (β → γ), and
(β ↔ γ).

Suppose the traffic light is red and the oncoming car is not stopping. This state of the
system can be described in L{p,q} by means of the sentence p ∧ ¬q which tells us, in an
abbreviated way, that “The traffic light is red and it is not the case that the oncoming
car is stopping”. So here we have a symbolic description that identifies the state by
using sentences of the agent’s knowledge representation language L{p,q}.

How could we represent the same state semantically?

A very simple semantic way to represent states is to use functions called truth assign-
ments instead of sentences in L{p,q}. Here is how it works.

Our set of atomic sentences is
A = {p, q}.

A sentence may have either of two possible truth values, i.e. each sentence is either true
or false, and we indicate truth and falsity respectively by the numbers 1 and 0. So a
truth assignment is any function

f : A −→ {0, 1}.

6

For example, f might be the function given by f(p) = 1 and f(q) = 0. Since p abbreviates
“The traffic light is red” and q abbreviates “The oncoming car is stopping,”the truth
assignment f is a semantic representation of the state in which the traffic light is red (p
is true) and the oncoming car is not stopping (q is false).

Definition 2 (States) The set of all truth assignments f : A −→ {0, 1} will be denoted
by WA and the set of states of a system of interest will be denoted by S.

For now, we simply assume S = WA. In Lecture 2 we will look at cases in which we
might want S 6= WA.

Notation 1 (Strings) To avoid mindless tedium we often abbreviate truth assignments
as binary strings. For example, the function f that has f(p) = 1 and f(q) = 0 is
abbreviated by writing just 10, since this shorthand tells us that p gets the truth value 1
and q gets the truth value 0. As long as we remember the order in which to consider the
atomic sentences, the little string of binary digits tells us exactly which truth assignment
we’re dealing with.

It now becomes obvious that the traffic system has exactly four possible states:

S = {11, 10, 01, 00}.

Satisfaction and models

In the basic epistemic scenario, an agent wants to figure out “What is the current state
of the system?”.

The traffic system has four possible states, namely 11, 10, 01, 00. Which is the real one?
The more information the agent is able to bring to bear, the more possibilities the agent
will be able to rule out. Ideally, the agent would be able to get enough information to
rule out all but one state, but this ideal is seldom realised in practice — even high-quality
sensors like eyes and ears may be unable to narrow down the possibilities to a single
candidate for being the actual state.

Suppose the agent waiting at the intersection can see that the traffic light is red but has
no information about whether the oncoming car is going to stop. How can the agent
represent this very limited information about the state of the Traffic System?

Symbolically, using the propositional language, the agent’s best attempt at describing
the actual state is just to assert that the traffic light is red, i.e. to assert p.

Semantically, using truth assignments, the agent can narrow down the set S = {11, 10, 01, 00}
of states by excluding the two states in which the light is not red, leaving {11, 10} as
the candidates that, as far as the agent can tell, might be the actual state.

What is the connection between the agent’s symbolic description p and the semantic
representation {11, 10}? The set {11, 10} consists of all the states that satisfy the sen-

7

tence p, in other words all the states that make p true. We call a state that satisfies a
sentence a model of that sentence. Every state will satisfy some sentences and fail to
satisfy (i.e. make false) the remaining sentences. Similarly, a sentence will usually be
true in some states and false in others.

It is easy to figure out whether a state satisfies an atomic sentence like p. After all,
states are (or are closely associated with) functions that assign truth values to atomic
sentences. So we immediately see that the states 11 and 10 satisfy the sentence p whereas
01 and 00 don’t satisfy p. Similarly 11 and 01 satisfy q but 10 and 00 don’t.

But what about a more complex sentence built up from atomic sentences with the help
of connectives?

Definition 3 (Satisfaction) Let α ∈ LA and let f be any state of the system. Then f
satisfies α if and only if one of the following is the case:

• α ∈ A and f(α) = 1

• α = ¬β and f fails to satisfy β

• α = β ∧ γ and f satisfies both β and γ

• α = β ∨ γ and f satisfies at least one of β and γ

• α = β → γ and f satisfies γ or fails to satisfy β

• α = β ↔ γ and f satisfies either both β and γ or else neither.

The definition of satisfaction gives us an algorithm by which we can work out whether
a state satisfies a sentence or not. Break the sentence down to its atoms, see what truth
values the state gives to those, then build up the sentence step by step, keeping track of
the truth value each component gets according to the definition of satisfaction.

For example, to check whether 11 satisfies p ∧ ¬q, we note that 11 satisfies both atomic
sentences p and q, and so (by the definition of satisfaction) 11 fails to satisfy ¬q, and so
(again by the definition of satisfaction) 11 fails to satisfy p ∧ ¬q.

As a second example, does 11 satisfy q → p? Yes, because 11 satisfies the atomic sentence
p and thus (by the definition of satisfaction) satisfies q → p.

Notice that every clause in the definition of satisfaction has a shadow side. The clause
for conjunctions tells us directly that a state f satisfies a sentence β ∧ γ if and only if f
satisfies both β and γ. The shadow side of this clause in the definition tells us that if f
for some reason fails to satisfy any of β and γ, then that ensures f does not satisfy the
conjunction β ∧ γ.

To use the definition of satisfaction, you need to be comfortable with seeing and using
the shadow side as well. The exercises will give you practice.

Recall that if a sentence α is satisfied by a state f then f is a model of α.

8

Definition 4 (Set of models) The set consisting of all the states that satisfy a sentence
α is denoted by Mod(α), which we read: the set of models of α.

A sentence will usually be true in some states and false in the other states. But there
are exceptions. Let ∅ stand for the empty set (i.e. the set with no members).

Definition 5 (Special cases) If Mod(α) = ∅ then α is called a contradiction; if Mod(α) =
S then α is called a valid sentence or tautology.

Classical entailment

What inferences are sanctioned by classical propositional logic?

We abbreviate “The inference from premiss α to conclusion β is allowable in classical
logic” by saying that α classically entails β, or writing α |= β. (The symbol |= is
called a double turnstile.) The following definition tells us which inferences are classical
entailments.

Definition 6 (Classical entailment):
α |= β if and only if every state x that satisfies α also satisfies β.

For those who are mathematically inclined, the definition could be re-written to say that
α |= β if and only if Mod(α) ⊆Mod(β).

The idea underlying the definition is that a conclusion should follow from a premiss if
and only if every state making the premiss true also makes the conclusion true. It must
never be the case that the conclusion turns out to be false under circumstances that
make the premiss true. Think of this as a very safe criterion — if we know that the
premiss is true, we may have complete confidence in the conclusion.

For example, suppose the driver waiting at the intersection can see that the traffic light
for cross traffic is red (and so he knows that p is the case). Suppose the driver also knows
that he lives in an ideal world in which there is a universally obeyed law to the effect
that cars stop at red lights, which we can formalise as the sentence p → q and which,
in this ideal world, the driver can consider to be true. (So in this imaginary universe,
there are no reckless or careless drivers who drive across red lights.)

The two items give the driver two premisses, namely p and p→ q, which we may combine
into a single premiss of the form p ∧ (p→ q).

The premiss p ∧ (p → q) entails the conclusion q because every model of p ∧ (p → q) is
also a model of q.

To see this, let us calculate the models of p ∧ (p → q). We can do this by considering
each state in turn.

9

State 11 satisfies p and (since 11 satisfies q) also satisfies p → q, so that 11 satisfies
p ∧ (p→ q).

State 10 fails to satisfy p→ q and thus fails to be a model of p ∧ (p→ q).

State 01 fails to satisfy p and thus fails to be a model of p ∧ (p→ q).

Finally, state 00 fails to satisfy p and thus fails to be a model of p ∧ (p→ q).

Accordingly Mod(p ∧ (p→ q)) = {11}.

Now, does 11 satisfy the conclusion q? Yes, clearly it does. Thus

p ∧ (p→ q) |= q.

Propositions

Let’s talk about information. A sentence like p expresses symbolically some information
about what the current state of the system is, namely that it is a state in which the
traffic light is red (since p abbreviates “The light is red”).

The set of models of p is M(p) = {11, 10} and this set of models expresses exactly the
same information as the sentence p itself, because the set of models {11, 10} is formed
from the set S = {11, 10, 01, 00} of all states by throwing away the states 01 and 00 in
which the light is not red.

So a sentence and its set of models may be regarded as expressing the same information.
The sentence expresses the information symbolically, while the set of models expresses
it semantically.

Now consider that any item of information can be expressed symbolically in more than
one way. For example, saying that the light is red (p) conveys exactly the same infor-
mation as saying that the light is not not red (¬¬p). We can make this idea precise by
using the notion of equivalence, where we shall abbreviate the phrase “is equivalent to”
by the symbol ≡.

Definition 7 (Equivalence) α ≡ β if and only if Mod(α) = Mod(β).

To see why this matters, think of all the sentences of LA. Notice that even when A is a
small set of atomic sentences like {p, q}, the set of sentences LA is very large, in fact there
are an infinite number of sentences, because they can be made arbitrarily long:

p,¬p,¬¬p,¬¬¬p, . . .

However, this doesn’t necessarily mean we can say infinitely many things using our
language. Lots of these sentences say the same thing, in the sense that they exclude the
same states. For example, p and ¬¬p both have 11 and 10 as their models and thus

10

convey the same information. We can group sentences into equivalence classes according
to their models, and each equivalence class will have infinitely many sentences in it.

For example, in the p, q-language, there are infinitely many sentences that all have the
models 11 and 10, some of which are

p, p ∧ p, p ∧ (p ∧ p), p ∧ (p ∧ (p ∧ p)), . . .

All these sentences are equivalent — they say the same thing in increasingly boring
ways.

Definition 8 (Proposition) Let X ⊆ S be any set of states. The set of all sentences α
such that Mod(α) = X is called a proposition.

Thus a proposition is an equivalence class of sentences, and each proposition is associated
with a particular set of models (and thus with a particular item of information). It will
be convenient, when speaking of a proposition X, to pick one of the sentences in the
equivalence class and use that sentence as the generic representative of the proposition.
For example, when we speak of the endless set of sentences each of which has the models
11 and 10, then we may simply say that the proposition is p, even though really p is just
one of the many sentences in the proposition.

So the propositions of a language convey the various pieces of information that can be
expressed by that language. How many different pieces of information can be expressed
by the language L{p,q}, you may wonder? That’s what exercises are for!

Exercises

For these exercises, we assume that we are dealing with the traffic system and have a
language L{p,q} generated by the two atomic sentences in A = {p, q} with a set of states
S = WA = {11, 10, 01, 00}.

Quiz: The quiz question at the start of lecture 2 will come from exercise 3 below.

1. (Exercises on syntax) Which of the following symbols can appear in a sentence of
L{p,q}?

• →

• |=

• 00

• p

• ↔

• ≡

11

2. (Exercises on satisfaction) For each of the following, determine whether the sen-
tence is satisfied by the state 01 and show your reasoning:

• p ∧ ¬q

• ¬(p ∨ ¬q)

• ¬(q → p)

Here is a worked example showing how to set out your reasoning.

Suppose we want to show that 01 satisfies p ∨ (p→ q).

The state 01 fails to satisfy p but satisfies q.

By the definition of satisfaction, 01 satisfies p→ q.

Hence, by the definition of satisfaction, 01 satisfies p ∨ (p→ q).

3. (Exercises on models) For each of the following sentences α, write down its set of
models Mod(α):

• p ∨ ¬p

• p ∨ q

• p ∨ ¬q

• ¬p ∨ q

• ¬p ∨ ¬q

• p

• q

• p↔ q

• ¬(p↔ q)

• ¬q

• ¬p

• p ∧ q

• p ∧ ¬q

• ¬p ∧ q

• ¬p ∧ ¬q

• p ∧ ¬p

Remark: Do you see that we have given the 16 different propositions that can be
expressed by the p, q-language?

12

4. (Exercises on equivalence) For each of the following, decide which of the 16 sen-
tences listed in exercise 3 best expresses the same information and show your
reasoning:

• q ∨ p

• q ∧ p

• p→ q

• p if q

• Either p or q but not both.

• p→ p

• p→ ¬p

• ¬(p ∧ q)

• ¬(p ∨ q)

5. (Exercises on entailment) Arrange the sentences of exercise 3 in rows such that
all the sentences in the same row have the same number of models and, as you
descend from the top row, the number of models becomes one smaller in each step.
Leave a nice big gap between rows. Think of each sentence as a vertex in a graph.
Now insert edges according to the following rule. Each edge goes upward from one
row to the next row, and the edge connects a lower vertex x to a higher vertex y
if and only if x |= y.

Remark: The graph that you get is called the Lindenbaum-Tarski algebra. It is an
example of a Boolean algebra and is the reason propositional logic is sometimes
called Boolean logic.

6. (Exercises on designing languages) Using what you know, give a set A of atomic
sentences and a set S of states appropriate for logically modelling each of the
following systems of interest.

• The light-fan system has two components, a light and a fan, each of which may
be either on or off independently. The only features of interest are whether
the components are on or not.

• The light-fan-heater system has three components, a light, a fan, and a heater,
each of which may be either on or off independently. The only features of
interest are whether the components are on or not.

• A stable has two horses, Andy and Bandy. In each case, we are interested in
whether the horse has been fed and whether it has been watered.

13

