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Introduction

There are two things you can do with logic: apply it or prove things about it. If this were a
paper about AI, we would apply logic. Since it’s a paper about logic, we will prove things about
logic. This is called doing metalogic.

What do we want to prove? Well, let’s consider what makes a logic what it is. As we saw last
time, a logic has two aspects: syntax and semantics.

Syntax is about the design of a language to represent information symbolically. A language is
defined by a grammar (syntax) that tells us which strings make sense.

One way to change your logic is to change the grammar of the logic language. In lecture 1
we introduced a particular type of logic called classical propositional logic. Recall that the logic
language LA is generated from a nonempty set A of atomic sentences by means of the connectives
¬, ∧, ∨, →, and ↔. Changing A is a small change that gives us a different language of the same
kind (i.e. having the same grammar). When we get to epistemic logic and temporal logic and
first-order logic, we’ll expand the set of connectives, thus changing the syntax quite radically,
and the languages we end up with have very different powers of expression.

Syntax is about what is inside the logic language. Semantics is about what is outside the
language: what the sentences talk about. Syntax and semantics are supposed to march in
step.

Think of an agent explaining to someone in German where to buy a nice cup of coffee in London
while pointing out the route on a map. The German words are the syntactic symbols of the
language, the map is the semantic model underlying the language level. It had better be a map
of London and not of Glasgow or Berlin.

What draws syntax and semantics together in logic? At the heart of every logic is a definition of
satisfaction, which connects syntax and semantics by telling us which sentences are true in (i.e.
satisfied by) which states. Once we have the concept of satisfaction, we can define the crucially
important concept of entailment, which captures the way in which we are modelling the idea of
“thinking that goes right”.

So the second way to change your logic is to change the concept of entailment.
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This is what we’ll do when we get to nonmonotonic logic, for example. We’ll try to make
entailment reflect more closely the way people actually think when they’re thinking adaptively
about everyday situations.

So there are many kinds of logic. The best way to understand each kind of logic is to prove
things about it, in other words to do metalogic. In this lecture we do metalogic about classical
propositional logic. When we prove things about a logic, we either try to show that something is
a property the logic always possesses, or show that something is not a property always possessed
by this kind of logic.

The 3 card system

In the traffic system example of Lecture 1, we assumed that the set S of states was the same as the
set WA of truth assignments, i.e. S = WA. The following example shows that we sometimes want
to have S 6= WA. In other words, the property S = WA happened to hold for the traffic system
but does not always hold when we model real systems in classical propositional logic.

Instead of driving a car, our agent is now a card player. The 3 card system is about three players,
say player 1, player 2, and player 3, and a pack of cards containing only a red card, a green card,
and a blue card. The states of the system are the various possible deals, where each player must
get exactly one of the cards.

In order to build a language for representing information about the 3 card system, we could start
with the following set of atomic sentences:

A = {r1, r2, r3, g1, g2, g3, b1, b2, b3}.

Think of these atoms as abbreviations of the following assertions:

r1: The red card is dealt to player 1.

r2: The red card is dealt to player 2.

r3: The red card is dealt to player 3.

g1: The green card is dealt to player 1.

g2: The green card is dealt to player 2.

g3: The green card is dealt to player 3.

b1: The blue card is dealt to player 1.

b2: The blue card is dealt to player 2.

b3: The blue card is dealt to player 3.

From these atoms we can build complex sentences in the usual way by making use of the con-
nectives ¬, ∧, ∨, →, and ↔.

The set WA consists of all the functions f : A −→ {0, 1}, and so there are 29 = 512 functions
in WA. To see this, note that each truth assignment has 9 possible inputs from A, and each
input has 2 possible outputs, so that there are 2× 2× . . .× 2 (9 times) ways to assign one of two
outputs to each possible input.
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Does this mean the 3 card system has 512 different states? No, most of these 512 truth assign-
ments are spurious and do not represent legitimate deals. There are only 6 different way to deal
the three cards to three players according to the rule that each player gets a different card, i.e.
only 6 realisable states of the 3 Card System. To see this, note that there are 3 ways for a card
to be dealt to the first player, and for each way to deal a card to the first player there are then
2 ways for a card to be dealt to the second player, and finally just one way to deal the single
remaining card to the third player, giving 3× 2× 1 = 6 ways to deal the cards.

What about the other 506 truth assignments? They are perfectly good truth assignments, but
they don’t correspond to states of the 3 Card System. They can’t happen unless the rules are
broken. We basically don’t want to waste our time talking about them. We only want to talk
about the states that can happen within the rules of the game.

Now, we could use binary strings to talk about the states, but we would need strings with nine
bits, which is enough to make your eyes cross and your hair fall out. It takes a bit of effort to
get clear the difference between 110100101 and 110101001. There must be an easier way.

Let’s instead denote the 6 states by rgb, rbg, grb, gbr, brg, bgr where rgb stands for the state in
which player 1 gets the red card, player 2 the green, and player 3 the blue card, etc. (Note that
the little strings like rgb are names or labels we’ve given to states; the strings are not sentences
of the language LA.)

The state we have labelled rgb corresponds to the truth assignment f given by

f(r1) = 1

f(r2) = 0

f(r3) = 0

f(g1) = 0

f(g2) = 1

f(g3) = 0

f(b1) = 0

f(b2) = 0

f(b3) = 1.

In other words, f corresponds to the state we could call 100010001 if we use binary strings, but
choose to call rgb because that’s more easily comprehended.

It should be clear what truth assignments the remaining states correspond to.

Since our set of states is
S = {rgb, rbg, grb, gbr, brg, bgr}.

we now have a simple example of a system for which S 6= WA.

However, although S 6= WA, we must not think that the sets S and WA are disconnected. The
definition of satisfaction requires us to know whether an atomic sentence is true or false in a state.
If states are just truth assignments, then that’s easy. If not, then states have to be associated
with truth assignments. This may be done by a labelling function V : S −→ WA (the V stands
for “valuation” because V takes a state and gives a valuation of which atomic sentences are true
in that state).
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In the case of the 3 card system, the labelling function V : S −→ WA is the obvious function
sending rgb to the truth assignment f that makes only the atoms r1, g2, and b3 true; sending
rbg to the truth assignment making only r1, g3, and b2 true; sending grb to the truth assignment
making only r2, g1, and b3 true, and so forth.

What does the definition of satisfaction look like when we allow S 6= WA?

Definition 1 (Satisfaction for a semantics with S, WA, and labelling function V : S −→ WA)
Let α ∈ LA and let s be any state in S. Then s satisfies α if and only if one of the following is
the case:

• α ∈ A and V (s)(α) = 1

• α = ¬β and s fails to satisfy β

• α = β ∧ γ and s satisfies both β and γ

• α = β ∨ γ and s satisfies at least one of β and γ

• α = β → γ and s satisfies γ or fails to satisfy β

• α = β ↔ γ and s satisfies either both β and γ or else neither.

We see that the only change is the way in which we discover whether a state s satisfies an
atomic sentence α from A. We must first find the truth assignment corresponding to the state
s by calculating V (s). Since V : S −→ WA, feeding V a state s as input will result in a truth
assignment V (s) in WA as output. Now we can apply this truth assignment to the atomic
sentence α and see what truth value we get.

Proof strategies

To show that when we use propositional logic we do not always have to take S = WA, it was
sufficient to give an example of a system for which we clearly want to have S 6= WA. Broadly
speaking, whenever you need to show that something is not always the case, or show that some
sort of situation can exist, then it is enough to provide an example of the right kind.

In contrast, if you want to show that something is indeed always the case, or want to show that
some sort of situation can never exist, then providing an example will not do. Instead, you have
to give a general proof. And when you write out a proof, you need to do it in such a way that
someone who reads your proof can make sense of it, understanding not just the details but also
the overall structure of your argument. In other words, your proof strategy should be familiar
and comprehensible to other researchers.

There are 4 proof strategies that we will use: direct proof, proof by contradiction, vacuous proof,
and proof by induction. (Induction will be discussed in lecture 3.)

Think of a proof strategy as a way to set out your argument that makes clear to others what
you are trying to do.

Direct proof

Almost all the things you might want to prove will have the general form “If X is the case, then
Y is also the case”. In direct proof, we begin by assuming that X is the case and show step by
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step that Y is the case. Direct proof keeps going in the same direction, forwards, one foot in
front of the other.

To illustrate, consider how we might use direct proof to prove that if a and b are odd integers
then a+ b is an even integer.

Proof. Suppose a and b are odd integers.

Then a and b both leave a remainder of 1 when divided by 2.

So a = 2k + 1 and b = 2m+ 1 for some integers k and m,

i.e. a+ b = 2k + 1 + 2m+ 1 = 2k + 2m+ 2 = 2(k +m+ 1).

Now 2(k +m+ 1) is divisible by 2 without a nonzero remainder.

Hence a+ b is an even integer.

More examples of direct proof will be given later.

Proof by contradiction

Proof by contradiction (also called reductio ad absurdum) is different from direct proof because
instead of going in one direction all the time it involves picking one direction at a fork in the road,
reaching a dead end, and then going back to the other tine of the fork. Proof by contradiction is
often useful if you’ve tried direct proof and got stuck because the next step wasn’t clear.

The idea is to prove “If X is the case, then Y is the case” by assuming X is the case and then
considering the two possibilities for Y: that Y is true, and that Y is false. We deliberately assume
Y is false, and try to show that this leads to a contradiction.

Another way to think of it: proof by contradiction starts off like direct proof with departure from
X, then pauses to look at a split into two directions. One of them we think is the good direction,
because we think it will take us where we want to go. The other is, we suspect, a bad direction,
likely to take us to a dead end. To finish the proof we follow the bad direction until we verify
that it leads to dead end, i.e. until we find a contradiction. A contradiction means something
has gone seriously wrong, so finding a contradiction justifies eliminating the bad direction and
leaves us with the other (good) one.

To illustrate, consider how we might use proof by contradiction to prove that if a2 is an even
integer then a is even.

Proof. Suppose a2 is an even integer.

Now there are two possibilities for a: either a is even or a is odd. (Clearly, this is the fork in the
road.)

We want to show that a is even, so let’s find a reason to eliminate the case where a is odd.

If a were odd, then a = 2m+ 1 for some integer m.

But then a2 = (2m+ 1)(2m+ 1) = 4m2 + 4m+ 1 = 2(2m2 + 2m) + 1

which leaves a remainder of 1 when divided by 2,

i.e. a2 would be odd.
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But this contradicts what we already know, namely that a2 is even.

We therefore eliminate the case that a is odd.

Hence a is even.

(In case you are wondering whether an integer can be both even and odd, the answer is no, as
you’ll see below.)

Vacuous proof

Suppose you want to show that “All things having property X also have property Y”. Basically
what you want to show is that one can never find a thing with property X that lacks property Y,
i.e. you want to show that one can never hope to find a counter-example. And occasionally we
can show this easily by demonstrating that there are no things having property X at all.

To illustrate, we give a vacuous proof that for every integer a which is both even and odd,
a2 > 113.

Proof. There are no integers a that are both even and odd.

To see this, note that if a is both even and odd then dividing a by 2 leaves a remainder of 0 (since
a is even) but also leaves a non-zero remainder of 1 (since a is odd). This is impossible.

Since there are no integers a having the two properties of being both even and odd, there are
no integers having the two properties of being even and being odd but failing to satisfy the
inequality a2 > 113.

Model theory

The time has come to apply our proof strategies. We will restrict our attention to metalogical
properties derived from our definition of satisfaction and, resting on that, the notions of model,
entailment, and equivalence. Hence we speak of our results as being model-theoretic.

In what follows we shall assume that the language LA is arbitrary, so that all we know about A
is that it is a nonempty set — we do not assume that A = {p, q}, although that is one of the
possibilities for A, and in fact we do not insist that A be finite, i.e. we allow the possibility that
A = {p0, p1, p2, . . .}. We further assume that we have a semantics for LA consisting of a set S of
states, the set WA of truth assignments, and a labelling function V : S −→ WA, in other words
everything needed for the definition of satisfaction to work even when we have S 6= WA.

For every sentence α ∈ LA, we have a set of models Mod(α). Let’s get to know this set of models
better. It will be helpful to recall some elementary set theory.

Remark 1 If X and Y are sets, then X ∩ Y is the intersection of X and Y , which is the set of
all x such that x is in X as well as in Y . Similarly, X ∪ Y is the union of X and Y , which is
the set of all x that belong to X or to Y or to both.

Remark 2 Two sets are equal if they have exactly the same members.

Theorem 2 Mod(ϕ ∧ ψ) = Mod(ϕ) ∩Mod(ψ).
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Proof. First we use direct proof to show that if x belongs to Mod(ϕ ∧ ψ) then x also belongs
to Mod(ϕ) ∩Mod(ψ).

Then we use direct proof to show that if x belongs to Mod(ϕ) ∩Mod(ψ) then x also belongs to
Mod(ϕ ∧ ψ).

This demonstrates that the two sets Mod(ϕ∧ψ) and Mod(ϕ)∩Mod(ψ) have the same members,
and thus the two sets are equal.

Let x ∈Mod(ϕ ∧ ψ).

Then x satisfies ϕ ∧ ψ.

So x satisfies ϕ and x satisfies ψ.

So x ∈Mod(ϕ) and x ∈Mod(ψ).

Hence x ∈Mod(ϕ) ∩Mod(ψ).

Since x was chosen arbitrarily, it follows that

every member of Mod(ϕ ∧ ψ) belongs to Mod(ϕ) ∩Mod(ψ).

Conversely, let x ∈Mod(ϕ) ∩Mod(ψ).

Then x ∈Mod(ϕ) and x ∈Mod(ψ).

So x satisfies ϕ and x satisfies ψ.

So x satisfies ϕ ∧ ψ.

Hence x ∈Mod(ϕ ∧ ψ).

Since x was arbitrary, every member of Mod(ϕ) ∩Mod(ψ) belongs to Mod(ϕ ∧ ψ).

In lecture 1, we used the concept of model to define classical entailment. Let’s get to know the
entailment relation |= a bit better.

Theorem 3 |= is reflexive: for all α ∈ LA, α |= α.

Proof. We use direct proof.

Let α ∈ LA.

Suppose x satisfies α.

Then x also satisfies α (strange as it may seem).

Hence α |= α.

That was almost too easy. Let’s try another property of |=.

Theorem 4 |= is monotonic: for all α, β, γ ∈ LA, if α |= β then α ∧ ϕ |= β.

Proof. We use proof by contradiction, not because we have to but just for fun.

Suppose α |= β.

Then every x satisfying α also satisfies β.

In other words, every model of α satisfies β. (Remember this fact.)
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Now there are two possible cases: either α ∧ ϕ |= β or α ∧ ϕ 2 β.

Suppose α ∧ ϕ 2 β.

Then there is some state x that satisfies α ∧ ϕ but that does not satisfy β.

But since this x satisfies α ∧ ϕ, we know that this x satisfies α.

And we know every model of α satisfies β. (The fact we had to remember above.)

Thus we have a contradiction: x both satisfies and fails to satisfy β.

This will not do, and so we may eliminate the case α ∧ ϕ 2 β.

Thus we are left with α ∧ ϕ |= β.

Next, let’s do one with vacuous proof.

Theorem 5 |= is explosive: for all β ∈ LA, α ∧ ¬α |= β.

(A contradiction entails every sentence.)

Proof. No model of α ∧ ¬α fails to satisfy β

because there are no models of α ∧ ¬α.

Closely related to entailment is equivalence. Let’s get to know equivalence better.

Theorem 6 ϕ ≡ ψ if and only if ϕ |= ψ and ψ |= ϕ.

Proof. We use direct proof in each direction.

Suppose ϕ ≡ ψ.

Then Mod(ϕ) = Mod(ψ).

Hence Mod(ϕ) and Mod(ψ) have the same members

i.e. every x satisfying ϕ also satisfies ψ

so that ϕ |= ψ,

and every x satisfying ψ also satisfies ϕ

so that ψ |= ϕ.

Conversely, suppose ϕ |= ψ and ψ |= ϕ.

Then every x in Mod(ϕ) also lives in Mod(ψ) since ϕ |= ψ,

and every x in Mod(ψ) also lives in Mod(ϕ) since ψ |= ϕ.

Hence Mod(ϕ) = Mod(ψ).

Thus ϕ ≡ ψ.

Equivalence (≡) goes in two directions whereas entailment (|=) goes in one direction. So it is
usual for proofs about equivalences to have two parts, in opposite directions.

Theorem 7 For all ϕ,ψ ∈ LA, (ϕ→ ψ) ≡ (¬ϕ ∨ ψ).
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Proof. Suppose x is in Mod(ϕ→ ψ)

i.e. x satisfies ϕ→ ψ.

Then x fails to satisfy ϕ or x satisfies ψ

i.e. x satisfies ¬ϕ or x satisfies ψ

i.e. x satisfies ¬ϕ ∨ ψ

i.e. x is in Mod(¬ϕ ∨ ψ).

Conversely suppose x is in Mod(¬ϕ ∨ ψ)

i.e. x satisfies ¬ϕ ∨ ψ.

Then x satisfies ¬ϕ or x satisfies ψ

i.e. x fails to satisfy ϕ or x satisfies ψ

i.e. x satisfies ϕ→ ψ

i.e. x is in Mod(ϕ→ ψ).

Combining the two halves, we have that

Mod(ϕ→ ψ) = Mod(¬ϕ ∨ ψ)

and thus that (ϕ→ ψ) ≡ (¬ϕ ∨ ψ).

Exercises

Quiz: The quiz question for lecture 3 will come from exercise 3 below.

1. Show that

• Mod(¬ϕ) = S −Mod(ϕ) where S −Mod(ϕ) is the set of all members of S that do
not belong to Mod(ϕ).

• Mod(ϕ ∨ ψ) = Mod(ϕ) ∪Mod(ψ).

2. Show that

• |= allows right-weakening: if α |= β and ϕ is any sentence, then α |= (β ∨ ϕ).

• |= allows conjunction of conclusions: if α |= β and α |= ϕ then α |= (β ∧ ϕ).

• |= allows disjunction of premisses: if α |= β and ϕ |= β then (α ∨ ϕ) |= β.

• |= is transitive: if α |= β and β |= ϕ then α |= ϕ.

• |= is contrapositive: if α |= β then ¬β |= ¬α.

• (Very important) |= is the global form of → in the following sense:

α |= β if and only if every state in S satisfies α→ β.

3. Show that for all ϕ,ψ ∈ LA the following hold:

• ϕ ≡ ¬¬ϕ
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• ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ)

• ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

• ¬(ϕ↔ ψ) ≡ (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ)

• ϕ ≡ ψ if and only if every state satisfies ϕ↔ ψ.

Remark 3 Logic is not just about technical results. You should spend some time thinking about
the concepts and imagining what you would say if your Aunt Maud asked you an obvious question
such as: “So what’s logic about, then?”

10


