COSC 410

The Resource Description Framework




RDF is basically triples

® subject predicate object .

® Strangely reminiscent of an old Al language
called SAIL, and binary relations

® and description logics: (x,y) € r is written
Xry.

® Another viewpoint: Directed Graphs.
Hence the word “node” for subject/object.




Naming

® Subijects, predicates, and objects can be IRIs
[URL special-case-of UR| .
IRl internationalised-version-of URI.]

® Subjects and objects can be “blank nodes”.

® Obijects can be literals (number or strings;
RDFS lets you tag literals with language or
data type but not both).




IRIs

For the most part, IRIs are just strings in
namespaces. .

Some IRIs have semantics defined in public
documents, notably rdf itself and foaf.

IRIs can be things like ISBNs too...

They are rigid designators, always standing
for the same thing (whatever that is).




Blank nodes

® Blank nodes are like existentially quantified
variables. :foobar will refer to the same
node throughout an RDF graph, but it
won’t have an absolute identity that can be
referred to elsewhere. For example,

_:m mother_of simpsons:bart .

_:m hair_colour “blue”.




Three special prefixes

® rdf:is used for RDF special terms
® rdfs:is used for RDF Scheme terms

® xsd:is used for XML Schema datatypes

® Example:http://www.w3.0rg/
1999/02/22-rdf-syntax-ns#type might
be written rdf:type




Literals

“value”Mtype
data type is aligned with XML Schemas

xsd:string, boolean, decimal, integer; double,
float, date, time, dateTime, date TimeStamp,
gYear, gMonth, gDay, ..., byte, short, long, ...,

base64Binary, language, token, xsd:Name, ...

+ rdf:HTML and rdf:XMLLiteral




Plain RDF is just triples

® Except for blank nodes, it’s just binary
relations between entities (individuals,
resources) and binary relations between
entities and values.

® [wo sets of triples are equivalent iff there is
a bijection between the blank nodes of one
and the blank nodes of the other making
the two sets equal. That’s it.




RDF Schema is a DL

c rdf:itype rdf.iclass. ¢ is a concept.
r rdf:type rdf:property. r is a role.

x rdfitype c. X € c.

c rdfs:subClassOf:d. cC d

p rdfs:subPropertyOf:q. p C g

p rdfs:domain c.3r. T C ¢ (range similar)




Why rdf:/rdfs:?

® “The fact that the constructs have two
different prefixes is a somewhat annoying
historical artefact, which is preserved for
backward compatibility.”

® NB:schema.org has lots of webby concepts
you should use instead of reinventing.




Writing RDF data

There are many ways to write RDF.

You can use XML. You can embed RDF in
HTML. You can even use |JSON.

The simplest method is N-Triples.

<subj> <pred> <obj>. or
<subj> <pred> “literal”.
IRIs are written between < ... > brackets.




Turtle

IRIs may be relative. BASE <iri> says what
they are relative to.

PREFIX pfx: <iri> says that pfx:name is to
be interpreted as <iriname>

spl ol ;p2 02 ;p3 03 .lets you avoid
repeating a subject. 04, 05, 06 same pred.

“a” stands for “‘rdf:itype”




Example

@base <http://example.org/>

® (@prefix
Qprefix
Qprefix
Qprefix
Qprefix

foaf: <http://xmlns.com/foaf/0.1/>

xsd: <http://www.w3.0rg/2001/XMLSchema#>
schema: <http://schema.org/>

dcterms: <http://purl.org/dc/terms/>

wd: <http://www.wikidata.org/entity/>

® wd:012418
dcterms:title "Mona Lisa" ;
dcterms:creator <http://dbpedia.org/resource/

Leonardo da Vinci>

13


http://example.org/
http://example.org/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://schema.org/
http://schema.org/
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://www.wikidata.org/entity/
http://www.wikidata.org/entity/
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci

Example (2)

® <bob#me>

a foaf:Person ;
foaf:knows <alice#me> ;

schema:birthDate "1990-07-04"""xsd:date ;
foaf:topic interest wd:0Q012418

® <http://data.europeana.eu/item/04802/243FA>

dcterms:subject wd:012418

[] foaf:topic interest |
dcterms:title "Mona Lisa" :

4

dcterms:creator <http://dbpedia.org/resource/

Leonardo _da_Vinci> ] .

14


http://data.europeana.eu/item/04802/243FA
http://data.europeana.eu/item/04802/243FA
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci

Triple stores

® A triple store accepts (s,p,0) and (s,p,V)
triples. Lots of them, up to milliards.

® You can enumerate matches for partially

specified triples, e.g., in SWI Prolog,
rdf(wd:’Q12418’, dcterms:title, Title)

® |ssues: storage bulk, speed of loading, speed of
retrieval, kinds of match allowed, ability to hold
multiple graphs and query across them.

15



Inference

® With rdf:type, rdfs:domain, and so on, RDF
is a description logic.

® We would like a query to succeed if it is
true, whether it was explicitly stored or
not.

® Some triple stores do this, e.g., ClioPatria




Righer level triples

® |t’s not enough to find matches, present or
implied, for partial patterns.

® VWe want to write queries above the level
of the DL.




SPARQL

Start with Turtle.

Add logical variables {name.

Add case-insensitive keywords.
Yearn for the respectability of SQL.

Stir and bake.




Simple Query

® SELECT vars WHERE { triples }

e SELECT DISTINCT vars WHERE { triples }




Beware!

® | anguage tagging is essential in a world with
6,000 living languages

® But“barn” is an xsd:string and “barn”@en
is an rdf:langString and the two are not
equal! | can’t find any way to supply a
default language tag in Turtle or SPARQL.

® Results can contain blank nodes.




Beware!

® Turtle uses @base and @prefix and lets
you put them anywhere.

® SPARQL uses BASE and PREFIX (without a
dot after the IRIl) and only allows them at
the beginning.

® Turtle picked up BASE and PREFIX from
SPARQL, but Turtle is case sensitive.




expressions

® SELECT may use (expression AS ?var)

® The body of WHERE may use
BIND (expression AS ?var)

® The body of WHERE may use
FILTER expression — this can do
comparisons and regular expression
matching amongst other things




Returning a new graph

e CONSTRUCT { triples } WHERE { triples }

® blank nodes in the WHERE part are logical

variables, new blank nodes in the
CONSTRUCT part are really blank nodes.




OPTIONAL

® |n relational algebra, r X s (the left outer
join) joins tuples from r and s like r X s, but

when a tuple in r has no match in s it is
included anyway.

® { pattern0 OPTIONAL pattern| ...} is like
that. For a match of pattern0, information
will be added from pattern| if possible; if
not, pattern0 won't fail.




UNION

® A simple tuple list is an AND.
® { pattern0 UNION pattern| ...} is an OR.

® [hese can be nested in each other.




Negation

Negation is done with FILTER, e.g.,
FILTER (?x > ?y)

FILTER NOT EXISTS { pattern }

There is also FILTER EXISTS { pattern }

where the nested pattern does not provide
bindings for variables.

{ pattern0 MINUS patternl} is AND NOT.




Beware!

® |mitating SQL leads to a world of pain.

® Given :a :b :c,
SELECT *WHERE { ?s ?p o
FILTER NOT EXISTS {?x ?y ?z}} = nothing

SELECT *WHERE { s p !0
MINUS {?x ?y z}} = [(:a,:b,:c)]




Compound roles

® A role in SPARQL can be r, Ar (inverse),
rl/r2 (composition), rl|r2 (or), r*, r+, r?,
(r),and some other possibilities.

® :richard (:father|:mother)/:brother ?unc
asks for my uncles.

® You can’t use these in CONSTRUCT, only
in WHERE.




More SQL-like stuff

Aggregate expressions in SELECT:
COUNT, SUM, MIN, MAX,AVG, SAMPLE

Groups are defined using GROUP BY vars
and filtered using HAVING (expression)
You can sort with ORDER BY vars




SPARQL is not a logic

® SPARQL is a query language that sits on
top of a description logic. While there is
obviously some sort of subsumption
relationship between some parts of
queries, we don’t expect any algorithm to
find it. SPARQL queries make no assertion.

® This is how SPARQL escapes the
complexity of inference trap.




