
COSC 410
The Resource Description Framework

1

RDF is basically triples

• subject predicate object .

• Strangely reminiscent of an old AI language
called SAIL, and binary relations

• and description logics: (x,y) ∈ r is written
x r y .

• Another viewpoint: Directed Graphs.
Hence the word “node” for subject/object.

2

Naming

• Subjects, predicates, and objects can be IRIs
[URL special-case-of URI .
 IRI internationalised-version-of URI.]

• Subjects and objects can be “blank nodes”.

• Objects can be literals (number or strings;
RDFS lets you tag literals with language or
data type but not both).

3

IRIs

• For the most part, IRIs are just strings in
namespaces. .

• Some IRIs have semantics defined in public
documents, notably rdf itself and foaf.

• IRIs can be things like ISBNs too...

• They are rigid designators, always standing
for the same thing (whatever that is).

4

Blank nodes

• Blank nodes are like existentially quantified
variables. _:foobar will refer to the same
node throughout an RDF graph, but it
won’t have an absolute identity that can be
referred to elsewhere. For example,

_:m mother_of simpsons:bart .

_:m hair_colour “blue”.

5

Three special prefixes

• rdf: is used for RDF special terms

• rdfs: is used for RDF Scheme terms

• xsd: is used for XML Schema datatypes

• Example: http://www.w3.org/
1999/02/22-rdf-syntax-ns#type might
be written rdf:type

6

Literals

• “value”^^type

• data type is aligned with XML Schemas

• xsd:string, boolean, decimal, integer, double,
float, date, time, dateTime, date TimeStamp,
gYear, gMonth, gDay, ..., byte, short, long, ...,
base64Binary, language, token, xsd:Name, ...

• + rdf:HTML and rdf:XMLLiteral

7

Plain RDF is just triples

• Except for blank nodes, it’s just binary
relations between entities (individuals,
resources) and binary relations between
entities and values.

• Two sets of triples are equivalent iff there is
a bijection between the blank nodes of one
and the blank nodes of the other making
the two sets equal. That’s it.

8

RDF Schema is a DL

• c rdf:type rdf:class. c is a concept.

• r rdf:type rdf:property. r is a rôle.

• x rdf:type c. x ∈ c.

• c rdfs:subClassOf: d. c ⊑ d

• p rdfs:subPropertyOf: q. p ⊑ q

• p rdfs:domain c. ∃r.⊤ ⊑ c (range similar)

9

Why rdf:/rdfs:?

• “The fact that the constructs have two
different prefixes is a somewhat annoying
historical artefact, which is preserved for
backward compatibility.”

• NB: schema.org has lots of webby concepts
you should use instead of reinventing.

10

Writing RDF data

• There are many ways to write RDF.

• You can use XML. You can embed RDF in
HTML. You can even use JSON.

• The simplest method is N-Triples.

• <subj> <pred> <obj> . or
<subj> <pred> “literal”.
IRIs are written between < ... > brackets.

11

Turtle

• IRIs may be relative. BASE <iri> says what
they are relative to.

• PREFIX pfx: <iri> says that pfx:name is to
be interpreted as <iriname>

• s p1 o1 ; p2 o2 ; p3 o3 . lets you avoid
repeating a subject. o4, o5, o6 same pred.

• “a” stands for “rdf:type”

12

Example

• @base <http://example.org/> .

• @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix schema: <http://schema.org/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix wd: <http://www.wikidata.org/entity/> .

• wd:Q12418
 dcterms:title "Mona Lisa" ;
 dcterms:creator <http://dbpedia.org/resource/
Leonardo_da_Vinci> .

13

http://example.org/
http://example.org/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://schema.org/
http://schema.org/
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://www.wikidata.org/entity/
http://www.wikidata.org/entity/
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci

Example (2)

• <bob#me>
 a foaf:Person ;
 foaf:knows <alice#me> ;
 schema:birthDate "1990-07-04"^^xsd:date ;
 foaf:topic_interest wd:Q12418 .

• <http://data.europeana.eu/item/04802/243FA>
 dcterms:subject wd:Q12418 .

• [] foaf:topic_interest [
 dcterms:title "Mona Lisa" ;
 dcterms:creator <http://dbpedia.org/resource/
Leonardo_da_Vinci>] .

14

http://data.europeana.eu/item/04802/243FA
http://data.europeana.eu/item/04802/243FA
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci

Triple stores

• A triple store accepts (s,p,o) and (s,p,v)
triples. Lots of them, up to milliards.

• You can enumerate matches for partially
specified triples, e.g., in SWI Prolog,
rdf(wd:’Q12418’, dcterms:title, Title)

• Issues: storage bulk, speed of loading, speed of
retrieval, kinds of match allowed, ability to hold
multiple graphs and query across them.

15

Inference

• With rdf:type, rdfs:domain, and so on, RDF
is a description logic.

• We would like a query to succeed if it is
true, whether it was explicitly stored or
not.

• Some triple stores do this, e.g., ClioPatria

16

Higher level triples

• It’s not enough to find matches, present or
implied, for partial patterns.

• We want to write queries above the level
of the DL.

17

SPARQL

• Start with Turtle.

• Add logical variables ?name.

• Add case-insensitive keywords.

• Yearn for the respectability of SQL.

• Stir and bake.

18

Simple Query

• SELECT vars WHERE { triples }

• SELECT DISTINCT vars WHERE { triples }

19

Beware!

• Language tagging is essential in a world with
6,000 living languages

• But “barn” is an xsd:string and “barn”@en
is an rdf:langString and the two are not
equal! I can’t find any way to supply a
default language tag in Turtle or SPARQL.

• Results can contain blank nodes.

20

Beware!

• Turtle uses @base and @prefix and lets
you put them anywhere.

• SPARQL uses BASE and PREFIX (without a
dot after the IRI) and only allows them at
the beginning.

• Turtle picked up BASE and PREFIX from
SPARQL, but Turtle is case sensitive.

21

expressions

• SELECT may use (expression AS ?var)

• The body of WHERE may use
BIND (expression AS ?var)

• The body of WHERE may use
FILTER expression — this can do
comparisons and regular expression
matching amongst other things

22

Returning a new graph

• CONSTRUCT { triples } WHERE { triples }

• blank nodes in the WHERE part are logical
variables, new blank nodes in the
CONSTRUCT part are really blank nodes.

23

OPTIONAL

• In relational algebra, r ⋉ s (the left outer
join) joins tuples from r and s like r ⋈ s, but
when a tuple in r has no match in s it is
included anyway.

• { pattern0 OPTIONAL pattern1 ...} is like
that. For a match of pattern0, information
will be added from pattern1 if possible; if
not, pattern0 won’t fail.

24

UNION

• A simple tuple list is an AND.

• { pattern0 UNION pattern1 ...} is an OR.

• These can be nested in each other.

25

Negation

• Negation is done with FILTER, e.g.,
FILTER (?x > ?y)

• FILTER NOT EXISTS { pattern }

• There is also FILTER EXISTS { pattern }
where the nested pattern does not provide
bindings for variables.

• { pattern0 MINUS pattern1} is AND NOT.

26

Beware!

• Imitating SQL leads to a world of pain.

• Given :a :b :c,
SELECT * WHERE { ?s ?p ?o
FILTER NOT EXISTS {?x ?y ?z}} ➯ nothing

SELECT * WHERE { ?s ?p ?o
MINUS {?x ?y ?z}} ➯ [(:a,:b,:c)]

27

Compound rôles

• A rôle in SPARQL can be r, ^r (inverse),
r1/r2 (composition), r1|r2 (or), r*, r+, r?,
(r), and some other possibilities.

• :richard (:father|:mother)/:brother ?unc
asks for my uncles.

• You can’t use these in CONSTRUCT, only
in WHERE.

28

More SQL-like stuff

• Aggregate expressions in SELECT:
COUNT, SUM, MIN, MAX, AVG, SAMPLE

• Groups are defined using GROUP BY vars

• and filtered using HAVING (expression)

• You can sort with ORDER BY vars

29

SPARQL is not a logic

• SPARQL is a query language that sits on
top of a description logic. While there is
obviously some sort of subsumption
relationship between some parts of
queries, we don’t expect any algorithm to
find it. SPARQL queries make no assertion.

• This is how SPARQL escapes the
complexity of inference trap.

30

