

Paper overview and an introduction to security

OSC412

Paper overview

Overall aim of the paper

- central aspect of contemporary computing
- Investigate security technology in practice
- In 2014 we changed the focus to be more on cryptography and security than complexity

COSC412 Lecture 1, 2020

Explore the modern theoretical bases of cryptography—a

(Obviously exam papers pre-2014 thus cover different topics)

Lecturers

Michael Albert Main focus: theory fundamentals; quantum cryptography

David Eyers Main focus: cryptography in practice; security topics

Assessment

- Two assignments (20% total)

Poster and presentation (20% total)

- PDF will be due 2nd October—end of week 12;
- Presentations will be in week 13 (i.e., the last week of term)

Exam: Worth 60%, date TBC

COSC412 Lecture 1, 2020

Assignment 1, worth 10%, due 21st of August—end of week 7 Assignment 2, worth 10%, due 25th of Sept.—end of week 11

Textbook? Resources?

- We are not setting a particular textbook for the course • We expect to provide online references
- The COSC412 website resources section, and lecture notes section will link to material
- We'll present more than the examinable material In exam: only what we've been able to discuss

More on posters and presentations

- research in groups—including virtual participants!
- - They will be submitted before the presentations

You will select a security issue of interest that you can

 Groups must write & design their poster collaboratively Academic posters contain a lot of content—examples later

 Presentations from groups must involve all members of the group: during the introduction and/or poster tour

Potential outline of material

- Cryptography in practice and security (DE) • L1: Introduction and administration
- Cryptography theory (MA) • L2: Discrete probability and stream ciphers

 - L3: Asymmetric cryptography (definitions & math. foundations)
 - L4: RSA and elliptic curve cryptosystems
 - L5: Attacks on asymmetric cryptosystems
- More cryptography in practice (DE)
 - L6: Kerberos and Microsoft Active Directory

 L7: Block ciphers, HTTPS, TLS/SSL and certificates COSC412 Lecture 1, 2020

Potential outline of material (cont.)

- Mid-semester break is between L7 and L8 More cryptography in practice (DE)
- - L8: Decentralised authorisation and OAuth2
 - L9: Homomorphic Encryption
 - L10: Reliability, distributed consensus and blockchain
- Quantum computation and cryptography (MA)
 - L11: Introduction to quantum computation & Shor's algorithm
 - L12: Quantum cryptography
- L13: Poster presentations (you)

Learning objectives of lecture one

- Understand computer security fundamentals
- Be able to explain cryptography's role in security For the "in practice" parts of the course, we usually employ cryptography as a black box tool
- Appreciate alternatives to cryptography Describe the limits of cryptography as a tool Explain threats cryptography cannot protect against

What is cryptography?

- A dictionary definition:
 - cryptography | krip'tägrəfē | noun
 - "the art of writing or solving codes."
- You should aim to be able to define the term more specifically to computing than this! The theory part of this course will help...

What is computer security?

- Physical security: protect console / computer Computer can be stolen? Encrypt disks
- Software security: authenticity, correctness e.g., code signing; verifying software behaviour
- Information security has three main pillars: Confidentiality; Integrity; Availability;
- Network security: untrustworthy regions

Why is cryptography useful for security?

- An untrusted channel can be used by intercommunicating trusted principals
 This is a correctness property...
- ... but what about liveness of communications?
 Malicious reading, or reading **and** writing?
- Don't need full control to break networks
 e.g., DDoS (Distributed Denial of Service)

Key principle: shared secret

- Trusted interactions need pre-shared data
- May not be immediately obvious
- Contrast the shared secret encoding in: • HTTPS, SSH, PGP

COSC412 Lecture 1, 2020

 Diffie-Hellman key-exchange establishes a shared secret but does not authenticate—beware man in the middle (MITM) risks

Look for where shared secrets fit in any given system

13

Some security doesn't need cryptography

- Physical security
 - Air gap isolation; data centre access
 - Restricting peripheral access (how?)
- Network security
 - Separate physical network cabling
 - Separate virtual networks (e.g., VLANs)
- What about software security? Compile software from source... but is this enough?

When is cryptography use inappropriate?

Life-long sensitive data storage

- While attackers might not be able to read the data today, you **are** still giving them your data in some form!
- For how long will a given cypher be secure?
- What application domains have this concern?

Managing keys may be challenging

- Performance used to be an argument—less so, now

Cryptography ageing (... badly)

- Strength diminished DES
- Bug in cryptography
 - MD5—hash collisions can be constructed:
 - <u>http://s3.amazonaws.com/dmk/md5_someday.pdf</u>
- Bug in protocol • OAuth; Kerberos 4; NTLM

New hardware, new threats to crypto.

- Hardware performance increases allow for brute-force attacks that were not previously possible End of Moore's Law: have to go parallel

 - ... but many attacks parallelise easily
 - Multicore CPUs, GPUs, FPGAs, Xeon Phi, many available via large botnets
- Indexing techniques: attackers have more storage too Practical to compute large datasets for attacks

Pillars of information security

- Recall the three main pillars of information security: Confidentiality, Integrity, Availability—CIA (!) We will look at where cryptography fits within each

- Other classifications exist, such as the IAS Octave:
 - Adds: privacy, authenticity & trustworthiness, non-repudiation, accountability and auditability
 - CIA principles can help inform these extra ones

Crypto in info. sec.: confidentiality

- Confidentiality (AKA secrecy) is probably the most widely appreciated cryptography use
 - Hiding of information
 - Controlling a set of people that have access
- Cryptography supports confidentiality when key distribution is controlled

 - (Alternatively just don't give out the data!)

COSC412 Lecture 1, 2020

Asymmetric cryptography: easier key distribution control

Crypto in info. sec.: integrity

- Checksums can check for changes in data
- - Usually use symmetric cryptography
- Digital signatures go further than MACs
 - Use asymmetric cryptography
 - Include necessary means for nonrepudiation

COSC412 Lecture 1, 2020

 Go further to create Message Authentication Codes (MACs) that include principal's identifying information

Crypto in info. sec.: availability

- Can cryptography help secure availability? • Not directly...
- Resources are used when rebuffing attacks Therefore attacks can affect availability cheaply
- Cryptography can help indirectly
 - Validate authenticity of network link usage
 - Effect distributed rate control of malicious use

Cryptography in code executables

- Signing of 'data' that is actually executable code • e.g., Java Archives (JARs), and

 - macOS and Windows executables
- Linux package repositories include signatures Often of packages rather than the EXEs contained (Debian)
- ... also sometimes from the bad guys (how?)

Building effective, secure systems

- Ross Anderson (University of Cambridge) has pioneered the field of Security Engineering
 - Cryptography? Yes, but also:
 - Social science; psychology; economics; etc.
 - Whole-system view—you can't retrofit good security
- Key point: most security systems involve users
 - (Terrible idea: they tend to mess everything up!)
 - The weakest link usually won't be the cryptography...

Too much trust in cryptography?

- - and PIN"
- Ross Anderson's group's bank disagreements
 - Highlight risks of banks blaming consumers:
 - Often assume their technology is near-perfect
- In any case: best plan security failures too

COSC412 Lecture 1, 2020

 But it can be the cryptography or usage protocol • E.g., on https://www.lightbluetouchpaper.org search for "Chip

Social engineering attacks

- Why would hackers try to break cryptography when they can access services through users? Phishing attacks are highly profitable
- We wouldn't expect to be 'phished' • ... but we tend to see so-called 'driftnet' attacks Driftnet attacks are easy to launch, and have low yield Targeted social engineering attacks are a different story: careful research is undertaken by the attacker

Authentication and Authorisation

- Return to how users participate in security
- Authentication involves proving identity Generally this should not need to change much
- Authorisation checks follow authentication
 - Privileges of user on target system are checked
 - Much more likely to change frequently

... AAA—add Accounting too

- Systems such as RADIUS provide for AAA (Remote Authentication Dial In User Service) RADIUS is often behind corporate Wi-Fi APs

 In addition to managing user identity, and user privileges, RADIUS also manages usage tracking

How does cryptography link to accounting?

Revocation

- Justifies authorisation / authentication split:
 - May need to remove the privileges of a user,
 - but you can't "remove" their identity
- How quickly does revocation take effect?
- Revocation and digitally-signed assertions:
 - Can systems revoke digitally signed statements?
 - e.g., HTTPS CRLs—more on these later

Delegation

- Delegation is a desirable security facility
 - Temporarily give another user privileges
 - Needs a clear revocation protocol
 - ... or an understanding that revocation is impractical
- Most use-cases only transfer some privileges
 - target of delegation!
 - onto access control

COSC412 Lecture 1, 2020

Aim is not for the delegator to be entirely impersonated by the

... so we need rich user privilege representation, which leads

Access Control

- ... is an enforcement mechanism of some policy
- Typically code-based enforcement, but this risks: Missing access control checks

 - Time of check to time of use (TOCTOU) errors
- Can code access control directly Ideally make policy entirely code independent Can use libraries such as XACML

Access Control Matrix

 Fundamental representation of users, objects and privileges within a secured system

	/dev/random	Directory 'logs'	File 'report.pdf'
User Jim	read	read, write, execute, own	
User Ned	read	read, execute	read,write,own

 Collect columns? Get Access Control Lists (ACLs) Collect rows? Get 'capabilities'

Discretionary Access Control—DAC

DAC is the most common form of access control

- Users are free to modify access privileges over objects that they own—think Unix / NTFS filesystem permissions
- No system-wide security policy

Mandatory Access Control—MAC

- Common in military / intelligence services
- Data-linked security: system-wide policy
 - Often based on labels
 - Users have labels; processes inherit labels
 - Data items also have labels
- User/data label policy is enforced, e.g.: No write-down—you can't declassify information No read-up—you can't read more sensitive data

Role-based Access Control—RBAC

- Introduce roles as an abstraction between users and privileges
- Like user groups, but more expressive Roles have to be activated within a session Role activation usually under control of the user e.g., RBAC avoids Solaris needing all-powerful 'root' user
- We'll see an RBAC / crypto link much later

Password management and cryptography

- Can check if a password is known, and not what it is Seldom need to store passwords directly Instead store a hash of the password
- Original /etc/passwd format on Unix systems Two character salt, then password, all world readable (why
 - world readable?)
 - Dictionary attacks... (how do these work?)
 - What's a rainbow table?

Password management and cryptography

- Use /etc/shadow to hide password hash:
- pwdemo:\$6\$VZxDr96Y\$xi0nNurzQPNHruyGQN.E0W09pDm.IRyzHCrbfbc0Mba 5NwuWPhXbNqH6hf5kTyt.YvcK.jg0zl1GREXKT4f/Z.:16249:0:99999:7:::
 - The structure is: \$method\$salt\$password
- Mentioned salt: many high profile breaches didn't use salt... but all developers should know to do so ... even Adobe, with its ~150million unsalted passwords leaked
- - If in doubt, don't write your own security library!

Summary

- Introduced cryptography and security
 - Cryptography is not always needed for security
 - Placed crypto in the context of access control
 - Skimmed over use of crypto in typical software systems and network protocols

Security Engineering: a whole-system view

- Consider all of the interacting participants
- Plan for security failures—everyone makes mistakes!

Preparation for next week...

- Use the free enrolment option at: https://www.coursera.org/learn/crypto
- stream ciphers
- Michael will be concentrating on the theoretical aspects but the practical bits are interesting too

COSC412 Lecture 1, 2020

View the week 1 material, in particular the material on

