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This week

◮ Abstracting the problem
◮ Symmetric cryptosystems
◮ Attacks and examples
◮ Discrete probability
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The basic problem

Hello Bob
Alice wishes to send Bob a confidential message whose
contents may be of interest to a third party, Eve.

What resources can Eve devote to the discovery of the
contents?

Objective

It should be at least as difficult for Eve to reconstruct the
message having intercepted it, as it would be to suborn the
process in some other way.

That is, the message security should be at least as good as the
general security.
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Messages and keys

Message space

The message space, M, is the set of all possible messages.
These can be thought of as strings, or just sequences of bits,
bytes, or words.

Keys and key space

A key is a piece of genuinely private information held by Alice
and Bob (but not Eve!) The key space, K, is the set of all
possible keys.

4



Symmetric cryptosystems

A symmetric cryptosystem (or symmetric cryptographic
protocol) is a pair of functions:

E : K ×M → M
D : K ×M → M

such that for all m ∈ M and all k ∈ K,

D(k ,E(k ,m)) = m.

That is, if, from a message m, Alice produces a ciphertext,
c = E(k ,m), and sends it to Bob then he can recover it by
computing m = D(k , c).
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Attack types

We’ll consider four broad type of attack:
◮ Ciphertext only Eve has access only to the encrypted

message c (or possibly some sequence of encrypted
messages).

◮ Known plaintext Eve has access to some pairs (m, c) of
previous messages and ciphertexts.

◮ Chosen plaintext Eve can choose certain messages and
gain access to their encrypted form.

◮ Brute force What it sounds like.
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Caesar cipher

◮ Take M to be the space of strings over A, the set of upper
case letters, A through Z .

◮ Think of these as A = 0 through Z = 25.
◮ Take K to be the set of upper case letters, and let k be a

particular key.
◮ E just “adds k ” to each letter of the message (wrapping

around, i.e., taking a remainder modulo 26).
◮ D just “subtracts k ”.
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Substitution cipher

◮ Take M to be the space of strings of upper case letters, A
through Z .

◮ Take K to be the set of permutations of A, and let κ be a
particular key.

◮ E just applies κ to each letter of the message.
◮ D just applies the inverse of κ
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Vigenère cipher (sixteenth century)

◮ Take M to be the space of strings of upper case letters, A
through Z .

◮ Take K to be the set of strings from A of some fixed length,
n, and let k = k0k1k2 . . . kn−1 be a particular key.

◮ E is just application of the Caesar ciphers corresponding to
the characters of k sequentially to m, wrapping around
back to the beginning of k when necessary.
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Vigenère revisited

◮ To break the Vigenère cipher it’s pretty much sufficient to
be able to work out the key length.

◮ Friedman test:
◮ break up the text according to an assumed key length,
◮ if correct each block will either represent a sample of letters

according to the standard frequency distribution (rotated),
◮ if incorrect each block will represent a mixture of two or

more such samples (with different rotations) so will be
“smoother”,

◮ try to quantify that smoothness.
◮ Additional information can be obtained from Kasiski

examination which looks for repeated trigrams and uses
the fact that gaps between them are likely to be multiples
of the key length.
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The key insights

◮ Attacks on classical cryptosystems are based on
discovering patterns in the ciphertext that correspond to
the structure of the plaintext.

◮ As computing resources increase these attacks grow
stronger and stronger.

◮ Any cryptosystem which creates such patterns must be
deemed to be (potentially) insecure.

◮ Random text contains no patterns.

Question
How can we create cryptosystems in which the ciphertext is, or
appears to be, random and yet still contains the information we
desire to transmit?
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Discrete probability

To try to understand randomness we need an understanding of
probability. We’re working with discrete data (strings etc.) so
discrete probability is all we need to know about.

That’s good because, in most instances, discrete probability is
just about counting!

See notes and examples from lecture.
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