Cosc 412: Cryptography and security Lecture 5 (5/8/2020)
 Complexity, knapsacks, and attacks

Michael Albert

michael.albert@cs.otago.ac.nz

This week

- P, NP, and all that stuff
- Knapsack cryptosystems
- Attacks on knapsacks
- Some RSA attacks
- Other uses for public key encryption

P, NP, and all that stuff

- The size of a problem (n) is the number of bits required to represent its input.
- The complexity of algorithms are measured in terms of how they scale with the problem's size.
- A problem can be solved in polynomial time (is in \mathcal{P}) if there is an algorithm to solve it whose running time is $O\left(n^{c}\right)$ for some constant c.
- A problem can be solved in non-deterministic polynomial time (is in $\mathcal{N P}$) if checking its solutions is in \mathcal{P}.
- A problem is NP-complete if it is in $\mathcal{N P}$ and at least as hard as every other problem in $\mathcal{N P}$ (specifically, if it were shown that the problem was in \mathcal{P}, then every problem in $\mathcal{N P}$ would be in \mathcal{P}).
- The, literally, million dollar questions: are \mathcal{P} and $\mathcal{N} \mathcal{P}$ the same thing?

3-SAT (NP-complete)

InPut:

- A sequence $x_{1}, x_{2}, \ldots x_{n}$ of binary variables.
- A set of clauses, each containing 3 literals e.g., $x_{1} \vee x_{2} \vee \neg x_{3}$.

Problem:

Is there a truth assignment to the variables that makes all the clauses true?

Traveling salesman (NP-complete)

InPut:

- A sequence $x_{0}, x_{1}, \ldots x_{n-1}$ of vertices.
- A function f from pairs or vertices to the positive integers.
- A parameter K

Problem:

Is there a permutation $y_{0}, y_{1}, \ldots, y_{n-1}$ of the vertices such that

$$
f\left(y_{0}, y_{1}\right)+f\left(y_{1}, y_{2}\right)+\cdots+f\left(y_{n-2}, y_{n-1}\right)+f\left(y_{n-1}, y_{0}\right) \leqslant K ?
$$

Vertex cover (NP-complete)

InPut:

- A graph G consisting of:
- A sequence $v_{0}, v_{1}, \ldots v_{n-1}$ of vertices.
- A set E of edges, each being an unordered pair of vertices.
- A parameter K

Problem:

Is there a set of K or fewer vertices such that every edge contains at least one vertex in the set?

Digression (fixed parameter tractability

- In many problems there is a parameter K, which is somewhat independent of the problem size n.
- Or there may be relevant parameters within the problem (e.g., for graphs, maximum degree of a vertex).
- If there is an algorithm whose complexity is $O\left(f(K) n^{c}\right)$ for any function f then we say that the problem is fixed-parameter tractable
- Problems of this type may be efficiently solvable even for quite large values of n if the parameter K is sufficiently small.

FPT example: vertex cover

- Pick an edge. One of its endpoints must be in any cover. Build a binary tree to depth K. With care $O\left(2^{k} n\right)$ (the 2 can be improved to 1.29).
- Reduce the problem to a small kernel as follows:
- If there is a vertex with more than K neighbours it must belong to any successful solution.
- Include it, delete the edges it covers, and continue (with parameter $K-1$).
- If not, every vertex covers at most K edges, so K vertices can cover only K^{2} edges so if graph has more than K^{2} edges (or more than $K^{2}+K$ vertices) no solution exists.
- If all is well so far, then we have at most $K^{2}+K$ vertices so just check each K element subset by brute force (or as above!)
- What is known about vertex-cover kernelization.

The holy grail of public key cryptosystems

Consists of (at least) three parts:

- Find an NP-complete problem for which almost all random instances are hard.
- Build a trap-door function around it that can only be opened by solving a random instance.
- Make sure it's resistant to quantum attacks (just in case).

It's not clear that this is completely achievable - though modern forms of homomorphic encryption come close. What follows is a tale of how you can go wrong ...

The subset sum problem

Input: A collection of positive weights, $w_{1}, w_{2}, \ldots, w_{n}$, and a positive integer S.
Problem: Find a vector $b \in\{0,1\}^{n}$ such that

$$
b_{1} w_{1}+b_{2} w_{2}+\cdots+b_{n} w_{n}=S
$$

Note we can also just ask the decision version (does such a vector exist). If we have access to a polynomial-time decider then we can just use it (at most) n times to build a solution.

Putting the decision problem in context

What's wrong with the following algorithm?

- Initialise a boolean array sums indexed from 0 to S, with sums $[0]=T$ (and all others F).
- For each w_{i} scan sums and, whenever sums $[j]=T$ set sums $\left[w_{i}+j\right]=T$ (assuming $w_{i}+j \leq S$)
- If we ever set sums[S]=T we're done. If not, we're done too.

That's $O(n S)$ so polynomial right?
No! The size of the problem is n (the number of weights) times the maximum number of bits required to represent a weight, plus the number of bits required to represent S. In that situation S itself is an exponential parameter.

Best known algorithms

- Split the weights into two groups of equal size
- Compute all sums of subsets of weights in each group
- Sort each set of sums
- Scan one list from the bottom and the other from the top, looking for a pair that add up to S
- Number of operations needed proportional to $n 2^{n / 2}$ and $2^{n / 2}$ storage needed

Easy problems

If the weights are super-increasing, i.e, for all $1 \leq i \leq n$

$$
w_{i}>\sum_{j=1}^{i-1} w_{j}
$$

then a greedy approach works.

From easy to hard (Merkle and Hellman)

How can we convert an easy knapsack problem into a hard one?

- Start with a super-increasing sequence of weights u_{1} through $u_{n}\left(u_{1} \simeq 2^{n}, u_{n} \simeq 2^{2 n}\right)$
- Choose $M>\sum_{i=1}^{n} u_{i}$ and W with $\operatorname{gcd}(M, W)=1$
- Compute $v_{i}=u_{i} W(\bmod M)$ for $1 \leq i \leq n$
- Let w_{1}, \ldots, w_{n} be the v 's in sorted order
- Now, if someone doesn't know M and W, knapsacks based on w's look hard, but since you do, they're easy
- If you like, iterate this process a couple of times

Cryptosystem

- Hide your easy weights as above, and announce w
- To encrypt, sender just computes $b \cdot w$
- To decrypt, you undo the modular multiplication to get back to the super-increasing context and work that out
- Much faster than RSA (a couple of orders of magnitude)
- Larger message size (double the number of bits)
- Larger key size

Too good to be true?

- Unfortunately yes
- Clearly leaks one bit of information (the exclusive or of the bits of b corresponding to odd a 's)
- Two basic kinds of attacks - one based on elementary arithmetic and one based on more complex lattice reduction techniques
- The main point is that it's enough to find some multiplier and modulus that turn a super-increasing system into the announced one - you don't have to get it exactly right

Signatures in RSA

- RSA is quasi-symmetric in that messages encoded with the private key could be decoded using the public key
- This allows a simple signature mechanism
- Bob transmits (with Alice's public key):

$$
E\left(p_{\text {alice }}, \text { "From Bob: } E\left(s_{\text {bob }}, m\right) "\right)
$$

- Alice strips the header and decodes the message with Bob's public key
- So long as Bob's private key is private, no one else could have sent the message

Attacks on RSA

- Key point: all attacks are on standards or implementations, none on the mathematics
- Math is easy - software and hardware are hard!

Some attacks

- Timing attacks - when "bad" ciphertext is found, the speed with which this happens can leak what sort of error occurred. An attacker can use this on multiple modifications of a ciphertext to dig out information about it (end of PKCS1 video)
- Using small secret keys (trying to speed up decryption) allows other "math-based" attacks (Second half of "Is RSA one-way video")
- Another timing attack - the time to compute c^{d} can expose d
- Similarly, power attack - the power used to do it (smartcard) can expose d (via repeated squaring - this is real!)
- Fault attack - an error in decryption can reveal d (middle of "RSA in Practice" video)

Entropy attacks

- What should happen - the keyspace for RSA is so large that there should never be collisions (see "birthday paradox")
- But keys are generated randomly - what if devices generating keys have "too little entropy" (so that pseudo-random generation is used)?
- Collisions might occur - frequently in one of the two primes, but not the other
- If $N_{1}=p q_{1}$ and $N_{2}=p q_{2}$ then $p=\operatorname{gcd}\left(N_{1}, N_{2}\right)$ and both channels are now effectively in the clear
- Try a big web crawl (and some clever tricks to pool gcd computations)
- About 0.5% of keys (in some measure) busted

