
Cosc 412: Cryptography and security
Lecture 5 (5/8/2020)

Complexity, knapsacks, and attacks

Michael Albert
michael.albert@cs.otago.ac.nz

1

mailto:michael.albert@cs.otago.ac.nz


This week

◮ P, NP, and all that stuff
◮ Knapsack cryptosystems
◮ Attacks on knapsacks
◮ Some RSA attacks
◮ Other uses for public key encryption

2



P, NP, and all that stuff
◮ The size of a problem (n) is the number of bits required to

represent its input.
◮ The complexity of algorithms are measured in terms of

how they scale with the problem’s size.
◮ A problem can be solved in polynomial time (is in P) if

there is an algorithm to solve it whose running time is
O(nc) for some constant c.

◮ A problem can be solved in non-deterministic polynomial
time (is in NP) if checking its solutions is in P.

◮ A problem is NP-complete if it is in NP and at least as
hard as every other problem in NP (specifically, if it were
shown that the problem was in P, then every problem in
NP would be in P).

◮ The, literally, million dollar questions: are P and NP the
same thing?

3



3-SAT (NP-complete)

INPUT:
◮ A sequence x1, x2, . . . xn of binary variables.
◮ A set of clauses, each containing 3 literals e.g.,

x1 ∨ x2 ∨ ¬x3.

PROBLEM:
Is there a truth assignment to the variables that makes all the
clauses true?

4



Traveling salesman (NP-complete)

INPUT:
◮ A sequence x0, x1, . . . xn−1 of vertices.
◮ A function f from pairs or vertices to the positive integers.
◮ A parameter K

PROBLEM:
Is there a permutation y0, y1, . . . , yn−1 of the vertices such that

f (y0, y1) + f (y1, y2) + · · ·+ f (yn−2, yn−1) + f (yn−1, y0) " K?

5



Vertex cover (NP-complete)

INPUT:
◮ A graph G consisting of:

◮ A sequence v0, v1, . . . vn−1 of vertices.
◮ A set E of edges, each being an unordered pair of vertices.

◮ A parameter K

PROBLEM:
Is there a set of K or fewer vertices such that every edge
contains at least one vertex in the set?

6



Digression (fixed parameter tractability

◮ In many problems there is a parameter K , which is
somewhat independent of the problem size n.

◮ Or there may be relevant parameters within the problem
(e.g., for graphs, maximum degree of a vertex).

◮ If there is an algorithm whose complexity is O(f (K )nc) for
any function f then we say that the problem is
fixed-parameter tractable

◮ Problems of this type may be efficiently solvable even for
quite large values of n if the parameter K is sufficiently
small.

7



FPT example: vertex cover

◮ Pick an edge. One of its endpoints must be in any cover.
Build a binary tree to depth K . With care O(2kn) (the 2 can
be improved to 1.29).

◮ Reduce the problem to a small kernel as follows:
◮ If there is a vertex with more than K neighbours it must

belong to any successful solution.
◮ Include it, delete the edges it covers, and continue (with

parameter K − 1).
◮ If not, every vertex covers at most K edges, so K vertices

can cover only K 2 edges so if graph has more than K 2

edges (or more than K 2 + K vertices) no solution exists.
◮ If all is well so far, then we have at most K 2 + K vertices so

just check each K element subset by brute force (or as
above!)

◮ What is known about vertex-cover kernelization.

8

https://link.springer.com/chapter/10.1007/978-3-319-98355-4_19


The holy grail of public key cryptosystems

Consists of (at least) three parts:
◮ Find an NP-complete problem for which almost all random

instances are hard.
◮ Build a trap-door function around it that can only be

opened by solving a random instance.
◮ Make sure it’s resistant to quantum attacks (just in case).

It’s not clear that this is completely achievable – though modern
forms of homomorphic encryption come close. What follows is
a tale of how you can go wrong . . .

9



The subset sum problem

Input: A collection of positive weights, w1, w2, . . . , wn,
and a positive integer S.

Problem: Find a vector b ∈ {0, 1}n such that

b1w1 + b2w2 + · · ·+ bnwn = S.

Note we can also just ask the decision version (does such a
vector exist). If we have access to a polynomial-time decider
then we can just use it (at most) n times to build a solution.

10



Putting the decision problem in context

What’s wrong with the following algorithm?

◮ Initialise a boolean array sums indexed from 0 to S, with
sums[0] = T (and all others F ).

◮ For each wi scan sums and, whenever sums[j] = T set
sums[wi + j] = T (assuming wi + j ≤ S)

◮ If we ever set sums[S] = T we’re done. If not, we’re done
too.

That’s O(nS) so polynomial right?

No! The size of the problem is n (the number of weights) times
the maximum number of bits required to represent a weight,
plus the number of bits required to represent S. In that situation
S itself is an exponential parameter.

11



Best known algorithms

◮ Split the weights into two groups of equal size
◮ Compute all sums of subsets of weights in each group
◮ Sort each set of sums
◮ Scan one list from the bottom and the other from the top,

looking for a pair that add up to S
◮ Number of operations needed proportional to n2n/2 and

2n/2 storage needed

12



Easy problems

If the weights are super-increasing, i.e, for all 1 ≤ i ≤ n

wi >

i−1!

j=1

wj

then a greedy approach works.

13



From easy to hard (Merkle and Hellman)

How can we convert an easy knapsack problem into a hard
one?

◮ Start with a super-increasing sequence of weights u1
through un (u1 ≃ 2n, un ≃ 22n)

◮ Choose M >
"n

i=1 ui and W with gcd(M,W ) = 1
◮ Compute vi = uiW (mod M) for 1 ≤ i ≤ n
◮ Let w1, . . . , wn be the v ’s in sorted order
◮ Now, if someone doesn’t know M and W , knapsacks

based on w ’s look hard, but since you do, they’re easy
◮ If you like, iterate this process a couple of times

14



Cryptosystem

◮ Hide your easy weights as above, and announce w
◮ To encrypt, sender just computes b · w
◮ To decrypt, you undo the modular multiplication to get back

to the super-increasing context and work that out
◮ Much faster than RSA (a couple of orders of magnitude)
◮ Larger message size (double the number of bits)
◮ Larger key size

15



Too good to be true?

◮ Unfortunately yes
◮ Clearly leaks one bit of information (the exclusive or of the

bits of b corresponding to odd a’s)
◮ Two basic kinds of attacks - one based on elementary

arithmetic and one based on more complex lattice
reduction techniques

◮ The main point is that it’s enough to find some multiplier
and modulus that turn a super-increasing system into the
announced one – you don’t have to get it exactly right

16



Signatures in RSA

◮ RSA is quasi-symmetric in that messages encoded with
the private key could be decoded using the public key

◮ This allows a simple signature mechanism
◮ Bob transmits (with Alice’s public key):

E(palice, “From Bob: E(sbob,m)”)

◮ Alice strips the header and decodes the message with
Bob’s public key

◮ So long as Bob’s private key is private, no one else could
have sent the message

17



Attacks on RSA

◮ Key point: all attacks are on standards or implementations,
none on the mathematics

◮ Math is easy – software and hardware are hard!

18



Some attacks

◮ Timing attacks – when “bad” ciphertext is found, the speed
with which this happens can leak what sort of error
occurred. An attacker can use this on multiple
modifications of a ciphertext to dig out information about it
(end of PKCS1 video)

◮ Using small secret keys (trying to speed up decryption)
allows other “math-based” attacks (Second half of “Is RSA
one-way video”)

◮ Another timing attack - the time to compute cd can expose
d

◮ Similarly, power attack - the power used to do it (smartcard)
can expose d (via repeated squaring – this is real!)

◮ Fault attack – an error in decryption can reveal d (middle of
“RSA in Practice” video)

19



Entropy attacks

◮ What should happen - the keyspace for RSA is so large
that there should never be collisions (see “birthday
paradox”)

◮ But keys are generated randomly - what if devices
generating keys have “too little entropy” (so that
pseudo-random generation is used)?

◮ Collisions might occur - frequently in one of the two primes,
but not the other

◮ If N1 = pq1 and N2 = pq2 then p = gcd(N1,N2) and both
channels are now effectively in the clear

◮ Try a big web crawl (and some clever tricks to pool gcd
computations)

◮ About 0.5% of keys (in some measure) busted

20


