
Kerberos and Active
Directory—symmetric

cryptography in practice
COSC412

Learning objectives

• Understand the function of Kerberos

• Explain how symmetric cryptography supports the
operation of Kerberos

• Summarise the relationship between Kerberos and
Microsoft Active Directory

2COSC412 Lecture 6, 2020

Motivation for Kerberos

• 1983: Project Athena (MIT + DEC + IBM)
• Support campus-wide distributed computing
• Particular emphasis on educational use

• Project Athena created many significant technologies:
• Thin clients, X Windows, IM, directory services, …

• Athena terminals were widely dispersed, physically
• Had to handle large numbers of users with different privileges

3COSC412 Lecture 6, 2020

The goals of Kerberos

• Provide a consistent way to authenticate to different
services. Moreover, provide single sign-on across them

• Facilitate mutually secure interactions between clients
and servers

• Operate securely over untrusted networks
• (So keep an eye out for how shared secrets are established)

4COSC412 Lecture 6, 2020

Kerberos in context

• MIT developed it: public release in late 1980s

• Kerberos is very widely supported at the OS level
• macOS, Linux, Windows, *BSD, Solaris, etc.
• Used for Apple’s “Back to My Mac” and other parts of iCloud

• Since Windows 2000, Kerberos is the means of
authenticating to Windows domains
• Crucial component of Microsoft Active Directory

5COSC412 Lecture 6, 2020

History of Kerberos versions

• Versions 1–3: internal to MIT. It was for Project Athena…

• Version 4: released in late 1980s
• Uses 56-bit DES… so you definitely shouldn’t use it anymore
• … and also has protocol weaknesses (encryption oracle)
• USA classified it as auxiliary military technology

• Version 5: released 1993; 2005 [RFC 4120]
• Allows negotiation of encryption algorithms

6COSC412 Lecture 6, 2020

Difficulties in using Kerberos

• Tickets have timestamps—requires synchronised clocks

• Key Distribution Centre (KDC):
• Single point of failure within the distributed system
• The KDC itself can be clustered …
• … but clients need to be able to reach it!
• Further: successfully breaking into KDC breaks all security

• Keys may be tied to hostnames… not so useful today

7COSC412 Lecture 6, 2020

How does Kerberos use cryptography?

• Kerberos works with symmetric key cryptography
• Can also use asymmetric key cryptography

•Where’s the shared secret?
• Actually, Kerberos uses many pairs of shared secrets

• Kerberos provides authorisation via tickets
• You can show what A says about you to B
• A and B don’t need to communicate directly
• Instead your ticket includes digital authenticated declarations

8COSC412 Lecture 6, 2020

Kerberos architecture

• For authentication purposes (infrequent)
• Client—the software that users control
• Authentication Server (AS)
• … part of the Key Distribution Centre (KDC)

• For service authorisation purposes (frequent)
• Ticket Granting Service (TGS)
• … also part of the Key Distribution Centre (KDC)

• Service Server (SS)—the target system user enacts privileges on

9COSC412 Lecture 6, 2020

Kerberos service use: four phases

• 1 User proves identity to their console
• e.g., using a password, smart-card, biometrics, etc.

• 2 Client contacts authentication service (AS)
• Single sign-on done; authentication complete
• Client receives a ticket granting ticket (TGT)

• 3 Client requests service authorisation (TGS)
• Client receives a service ticket (ST)

• 4 Client contacts service server (SS)
• Authorised to access service by the ST

10COSC412 Lecture 6, 2020

Discussing authentication phases

• User proves identity (to AS) through the use of long-
term, secure credentials
• AS interacts with KDC’s database to acquire TGT
• Session key also established

• TGT allows user to make authenticated requests of the
TGS without using the long-term secure credentials
• This is a key point of single sign on (SSO)

11COSC412 Lecture 6, 2020

Discussing authorisation phases

• User presents TGT to TGS
• This shares the session key
• TGS sends back service ticket

• TGS and the target service also share a secret
• So TGS can ‘tunnel’ a message to the service via the user

• Key point: service tickets have a lifetime
• … thus client can cache them locally

12COSC412 Lecture 6, 2020

Compare Kerberos to SSH public-key auth.

• Kerberos: authorisation + authentication
• Supports delegation (share ticket); fine-grained access control

• SSH key-pair is typically about your identity
• Can create keys for services, but they they lose link to user ID

• Security model different. Compromised host?
• Using public-key SSH, host learns your private key
• Using Kerberos? Less bad: root trust in KDC; also, tickets expire

13COSC412 Lecture 6, 2020

Accessing a service: SSH

• Let’s add a user ‘testme’, password ‘testme’

• SSH using a password (first time will check fingerprint)

• (Note: If you have already run kinit, you can remove
your existing tickets by using kdestroy)

14COSC412 Lecture 6, 2020

: ~$; sudo adduser testme
…

: ~$; ssh testme@ubuntu-xenial.testdomain whoami
testme@ubuntu-xenial.testdomain's password:
testme

(Visit COSC412 resources page for more information.)
On your computer run:
git clone https://altitude.otago.ac.nz/cosc412/demo-vm
cd cosc412-demo; vagrant up; vagrant ssh
Then, after SSHing to the VM, run:
. /vagrant/bash-vars.sh
/vagrant/kerberos/setup-kerberos.sh

https://altitude.otago.ac.nz/cosc412/demo-vm
https://altitude.otago.ac.nz/cosc412/demo-vm

Kerberos in practice: first steps

• First, look at Kerberos from client’s view

• Kerberos 5 tickets: name/instance@REALM
• Note that default domain was preconfigured
• TESTDOMAIN typically related to DNS domain

15COSC412 Lecture 6, 2020

/vagrant/kerberos/setup-kerberos-credentials.sh

: ~$; klist
klist: No ticket file: /tmp/krb5cc_1000
: ~$; kinit testme
testme@TESTDOMAIN's Password:
: ~$; klist
Credentials cache: FILE:/tmp/krb5cc_1000
 Principal: testme@TESTDOMAIN

 Issued Expires Principal
Aug 8 11:47:14 2020 Aug 8 21:47:05 2020 krbtgt/TESTDOMAIN@TESTDOMAIN

: ~$; ssh -v testme@ubuntu-xenial.testdomain whoami
OpenSSH_7.2p2 Ubuntu-4ubuntu2.8, OpenSSL 1.0.2g 1 Mar 2016
…
debug1: Host 'ubuntu-xenial.testdomain' is known and matches the ECDSA host key.
…
debug1: Authentications that can continue: publickey,gssapi-keyex,gssapi-with-mic,password
…
debug1: Next authentication method: gssapi-with-mic
debug1: Authentication succeeded (gssapi-with-mic).
Authenticated to ubuntu-xenial.testdomain ([127.0.1.1]:22).
…
debug1: Sending command: whoami
…

Accessing an SSH service with Kerberos

• SSH using Kerberos

• In more detail:

16COSC412 Lecture 6, 2020

: ~$; ssh testme@ubuntu-xenial.testdomain whoami
testme

Kerberos is a GSSAPI
implementation

Having SSHed, look at our tickets

• Requesting SSH has cached tickets for us:

• (Note: the middle ticket is due to my dodgy hack to avoid
setting up DNS. It shouldn’t be there but doesn’t break things.)

• SSH to ubuntu-xenial can use cache; no TGS comms.
17COSC412 Lecture 6, 2020

: ~$; klist
Credentials cache: FILE:/tmp/krb5cc_1000
 Principal: testme@TESTDOMAIN

 Issued Expires Principal
Aug 8 11:47:14 2020 Aug 8 21:47:05 2020 krbtgt/TESTDOMAIN@TESTDOMAIN
Aug 8 11:47:40 2020 Aug 8 21:47:05 2020 host/ubuntu-xenial.testdomain@
Aug 8 11:47:40 2020 Aug 8 21:47:05 2020 host/ubuntu-xenial.testdomain@TESTDOMAIN

Key Distribution Centre (KDC)

Kerberos steps in detail

• Client requests services for user from AS (no creds. sent)

• AS checks for valid user, and if so sends:
• Message M1: {K_session[client↔TGS]}K[client↔user]
• I am using notation {D}K for D encrypted with key K.

• Message M2: {TicketGrantingTicket}K[AS↔TGS]
• Includes client ID, ticket validity, K_session[client↔TGS]

18COSC412 Lecture 6, 2020

Client Authentication Server (AS)

Service Server (SS)

AS request

Ticket Granting Server (TGS)
M1 & M2

Kerberos steps in detail

• Client decrypts M1 using key generated from user
having authenticated
• (user authentication failure means client can’t decrypt M1)

• Client gets K_session[client↔TGS]

• Client can’t decrypt M2, and doesn’t need to

• Client can now actually authenticate to TGS

19COSC412 Lecture 6, 2020

Key Distribution Centre (KDC)

Client Authentication Server (AS)

Service Server (SS)

Ticket Granting Server (TGS)

Kerberos steps in detail

• To use a service, client sends 2 messages to the TGS:
• M3: {M2, serviceID}

• M4: {clientID, timestamp}K_session[client↔TGS]

• M4 is called an “authenticator”

• TGS retrieves M2 from M3; decrypts M2 (TGS & AS share a key)
• TGS now has K_session[client↔TGS]

20COSC412 Lecture 6, 2020

Key Distribution Centre (KDC)

Client Authentication Server (AS)

Service Server (SS)

M3 & M4
Ticket Granting Server (TGS)

Kerberos steps in detail

• TGS decrypts M4 (the authenticator); sends:
• M5: {ClientToServerTicket}K[TGS↔server]
• Ticket has client ID, validity, K_session[client↔server]

• M6: {K_session[client↔server]}K_session[client↔TGS]

• Client can now make authorisation request of service

21COSC412 Lecture 6, 2020

Key Distribution Centre (KDC)

Client Authentication Server (AS)

Service Server (SS)

Ticket Granting Server (TGS)

M5 & M6

Kerberos steps in detail

• Client sends Service Server (SS) two messages:
• M7: {M5}

• M8: {clientID, timestamp}K_session[client↔server]

• SS decrypts M7; gets K_session[client↔server]
• SS then decrypts M8 (which is an authenticator)

22COSC412 Lecture 6, 2020

Key Distribution Centre (KDC)

Client Authentication Server (AS)

Service Server (SS)

M7 & M8 Ticket Granting Server (TGS)

Kerberos steps in detail

• If SS is satisfied with client’s authenticator (M8), it sends
the following message to the client:
• M9: {timestamp[from M8]+1}K_session[client↔server]

• Client checks updated timestamp within M9
• Client can trust server and can start issuing requests

23COSC412 Lecture 6, 2020

Key Distribution Centre (KDC)

Client Authentication Server (AS)

Service Server (SS)

Ticket Granting Server (TGS)M9

Examining the ticket we requested

•We can get more information from klist
• Addressless: can use with NAT, etc.
• Note that encryption type is negotiable

24COSC412 Lecture 6, 2020

: ~$; klist -v
Credentials cache: FILE:/tmp/krb5cc_1000
 Principal: testme@TESTDOMAIN
 Cache version: 4

Server: krbtgt/TESTDOMAIN@TESTDOMAIN
Client: testme@TESTDOMAIN
Ticket etype: aes256-cts-hmac-sha1-96, kvno 1
Ticket length: 317
Auth time: Aug 8 11:47:14 2020
End time: Aug 8 21:47:05 2020
Ticket flags: enc-pa-rep, pre-authent, initial, proxiable, forwardable
Addresses: addressless

Cryptography in the ticket

• Ticket etype: aes256-cts-hmac-sha1-96
• (also includes key version number ‘1’)

• AES block cipher with 256-bit key
• Using cipher-text stealing (CTS)
• CTS allows non-block-length data to be handled

• Hash Message Authentication Code: SHA1?
• SHA1 is 160-bits… the 96 just means it is truncated to fit

25COSC412 Lecture 6, 2020

Kerberos tickets: encrypted fields

26COSC412 Lecture 6, 2020

Field Name Description
Flags Options regarding how & when ticket can be used (more later).
Key Session key for (en/de)crypting client/server communications.
Client Realm Realm from which the ticket was requested.
Client Name Name of the requestor.
Transited List Kerberos realms that participated in cross-realm client auth.
Authentication
Time

Timestamp from when client first received TGT. TGS copies this time to service
tickets.

Start Time Ticket is valid after this time.
End Time Ticket is not valid after this time.
Renew Till (Optional) A “RENEWABLE” ticket (more later) can be renewed until this time.
Client Address (Optional) A list of addresses from which the ticket can be used.
Authorisation-
Data

(Optional) Authorisation data relating to the client: not interpreted by KDC.
• MIT Kerberos uses the field for access restrictions.
• Microsoft Kerberos uses field to store SIDs (user + their groups).

Kerberos flags

27COSC412 Lecture 6, 2020

Flag Description
FORWARDABLE (TGT only) TGS is instructed that it can issue new TGTs with different network addresses,

when a client shows this TGT.
FORWARDED TGT: indicates this TGT was forwarded. Non-TGT: shows that a ticket was issued from a

forwarded TGT.
PROXIABLE (TGT only) TGS is instructed that it can issue tickets with network addresses different

from the TGT’s.
PROXY Ticket’s address is different from that of the TGT that authorised it.
MAY-POSTDATE (TGT only) TGS is instructed that postdated tickets are OK.
POSTDATED Records that this ticket was postdated when issued.
INVALID Services must have KDC validate this ticket before it’s used (e.g., a postdated ticket

that hasn’t yet reached its start time).
RENEWABLE If “End Time” has passed, but “Renew Till” has not, the KDC can issue a new ticket

without requiring re-authentication.
INITIAL Ticket not issued based on TGT, e.g., part of initial AS interaction.
PRE-AUTHENT The KDC authenticated the client before issuing a ticket. The evidence may be within

this ticket (e.g., an authenticator).
HW-AUTHENT Special-purpose hardware device was used for authentication.

Kerberos administration: first steps

• Let’s rewind: see how Kerberos was set up
• On VM we first have to install packages
• Also hack /etc/hosts so we don’t need DNS

• In terms of actual Kerberos administration:
• First the database needs to be initialised:

• Note that the -l option means we use a local Kerberos
database, rather than remote admin.

28COSC412 Lecture 6, 2020

sudo kadmin -l init --realm-max-ticket-life=unlimited \
--realm-max-renewable-life=unlimited TESTDOMAIN

Administration: adding a service

• Establish shared KDC↔service secret

• Here we cheated a bit with the /etc/krb5.keytab …
• …for the demo, KDC and SSH are sharing the same keytab file!
• Otherwise, we would copy the keytab file to the SSH server

29COSC412 Lecture 6, 2020

sudo kadmin -l add --random-key --max-ticket-life='1 day' --max-renewable-life='1 week’ \
 --expiration-time=never --pw-expiration-time=never --attributes='' --policy='default' \
 host/ubuntu-xenial.testdomain
sudo kadmin -l ext_keytab host/ubuntu-xenial.testdomain

: ~$; sudo ktutil list
FILE:/etc/krb5.keytab:

Vno Type Principal Aliases
 1 aes256-cts-hmac-sha1-96 host/ubuntu-xenial.testdomain@TESTDOMAIN
 1 des3-cbc-sha1 host/ubuntu-xenial.testdomain@TESTDOMAIN
 1 arcfour-hmac-md5 host/ubuntu-xenial.testdomain@TESTDOMAIN

Administration: adding a user

• Add a user principal to the local database:

• Note: testme principal was added before the Linux user had
been created, in the earlier demo

• Conventions link principle names and users
• e.g. SSH’s GSSAPI accepts login if you hold ticket:
host/FQDN@REALM (bold indicates a variable)

30COSC412 Lecture 6, 2020

sudo kadmin -l add --password='password' --max-ticket-life='1 day' --max-renewable-life='1 week' \  
--expiration-time=never --pw-expiration-time=never --attributes='' --policy='default' testme

Distributed Kerberos authorisation

• Many other principals created in our VM:
• krbtgt/TESTDOMAIN@TESTDOMAIN
• kadmin/changepw@TESTDOMAIN
• kadmin/admin@TESTDOMAIN
• changepw/kerberos@TESTDOMAIN
• kadmin/hprop@TESTDOMAIN
• WELLKNOWN/ANONYMOUS@TESTDOMAIN

• Allows for password changing, etc.

31COSC412 Lecture 6, 2020

Microsoft Active Directory

• Combines LDAP, Kerberos and dynamic DNS
• Facilitates almost entirely point-and-click setup of complex

distributed infrastructure

• Lightweight Directory Access Protocol (LDAP) manages
hierarchical directory of principals and group privileges

• Dynamic DNS allows clients to join domains from non-
fixed infrastructure

32COSC412 Lecture 6, 2020

Microsoft AD in context

• Microsoft’s underlying Kerberos is standard:
• Interoperation with other OSs is well supported

• Has some implementation-specific behaviour:
• e.g., password changing protocols added by MS (not in MIT)

• Samba from version 4.0 onwards allows Linux to act as
an Active Directory Domain Controller
• Many open source AD “drop-in” replacements are available

33COSC412 Lecture 6, 2020

Kerberos cross-realm authentication

• For example, allow service tickets in B.REALM.ORG to
be issued for principles from A.REALM.ORG
• Add to A.REALM.ORG and B.REALM.ORG the special principal
krbtgt/B.REALM.ORG@A.REALM.ORG
• Principals need the same key, encryption type, etc.

• For two-way trust, also add to both KDCs principal
• krbtgt/A.REALM.ORG@B.REALM.ORG

• Services ask for other realm’s TGT from local TGS

34COSC412 Lecture 6, 2020

Kerberos cross-realm authentication

• Microsoft AD incorporates similar concepts thoroughly
• Cross-tree trust support, e.g., for company mergers, etc.
• Includes explicit Kerberos 5 realm trust
• (complexities: MS ticket-equivalent has more fields)

• Cross-realm authentication killed Kerberos 4:
• Attacker that controls one realm can fabricate principal

names to align block-cipher blocks and have target realm
help create forged tickets
• Attacker can then authenticate as target’s local users

35COSC412 Lecture 6, 2020

In summary

• Described the motivation behind Kerberos, how it
works, and its relationship to Microsoft Active Directory

• Indicated how symmetric cryptography fits within
Kerberos systems, and its limitations

• Demonstrated how Kerberos can be configured to be
used for both authentication, and for authorisation of
service use

36COSC412 Lecture 6, 2020

