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Learning objectives

• Describe the notion of security ‘capabilities’ 

• Describe the purpose of web technology for 
distributed authorisation  

• Contrast between OAuth2 and Kerberos authorisation 
and authentication systems
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OAuth2

• HTTP-based set of protocols to allow resource owners 
to delegate access to their resources 
• Has different interaction modes: e.g., for browser / smartphone 

• OAuth2 is a token-based authorisation system 
• Tokens are similar to Kerberos tickets 
• Both abstract a notion of a capability 
• To me, ’token’ implies something opaque 
• We know that tickets have many attributes
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Defining security ‘capabilities’

• Abstract notion of access control matrix 
• ACLs list role permissions alongside each asset 
• Capabilities list permissions on assets for each user 

• Permission to perform some action can be decoupled 
from identity 
• Also, have different timescales: capabilities are short-lived 

compared to the user’s privilege
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Asset 1 Asset 2 File Device

Role 1 read, write, execute, own execute read write

Role 2 read read, write, execute, own



Cryptography in capabilities?

• For token-based capabilities, knowledge of an 
‘opaque’ token may be sufficient: 
• e.g., token is indirectly passed to (OAuth) client through an 

intermediary authorisation service 
• Transport-level security required—token is password equivalent 

• Alternatively, can encode data that only the target 
service can decrypt 
• thus the capability can be ‘checked’, as in Kerberos tickets
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Delegation of capabilities

• Authorisation using capabilities allows for delegation 
• Transfer the capability to some other principal 

• For example, using “add-on” software: 
• You want it to access your resources, so that it can be of help 

to you 
• ... but you don't want it to be you 
• Ideally: know which helper did what, when 
• (But our uses often don’t have this level of audit trail yet!)
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Have 4 participants, compared to Kerberos

• Aim is to delegate privilege to an independent service 
to access your data 
• … so need to add another principal compared to Kerberos 

• Also still have (in general terms): 
• user agent, target service, and a security service 

•… however in some cases above parties may combine 
• e.g., service seeking access might be on the same device as 

the user-agent
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OAuth history

• OAuth 1.0 released in 2007 
• Twitter developers realised that OpenID was not going to 

support delegated API access well 
• OAuth then adopted into IETF: RFC 5849 
• 2009: OAuth 1.0a fixes a session fixation flaw 

• OAuth 2.0 is current evolution [RFC6749,6750,8252] 
• Supported by Facebook, Twitter, Google, Microsoft, etc. 
• … however this committee effort has made it complex 
• Released in 2012 (… intended for 2010 release)
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More on session fixation attacks

• An attacker sets the session of their victim 
• Attacker can then join that session 

• Common web application workflow: 
• No active session? Authenticate user and create new session 
• Authentication check and session check may be separate 
• Possible risk that victim’s authentication URL sets the session 

• Not a cryptographic attack: authentication is skipped
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CSRF: also a session-based problem

• Cross-Site Request Forgery (CSRF) 
• Another case of skipping cryptography 

• Attacker embeds data on a.org that causes an HTTP 
request that targets b.org : 
• e.g., an image tag on a page, iframe, etc. 

• If victim still has a valid session on b.org the target site 
may honour the attacker’s request
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History repeating ... literally

• A recurring COSC412 theme of failure in cryptographic 
implementations: 
• Early OAuth 2.0 code often failed to use nonces (maybe still?) 

• OAuth 2.0 makes compromises of convenience 
• Requiring the ‘state’ parameter would limit some of the 

potential OAuth 2.0 use cases 
• (the ‘state’ parameter facilitates nonce checks) 
• Ideally systems would indicate their intended security level
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OAuth controversy

• OAuth operates at the level of HTTP requests 
• e.g., GET requests with parameters—URLs with sensitive data 
• … but browsers aren’t designed to handle this 
• What sorts of vectors spring to mind? 

• Also, parameters aren’t appropriately checked 
• (many layers of technology to worry about: URI encoding, etc.) 

• ... however OAuth is in use, so let's explore it anyway! 
• (Something like it will be in demand always, in any case)
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Roles in OAuth 2.0

• Resource Owner: the ‘end-user’ (or similar) 
• RO is granting access to part of their account 

• Client: software trying to access RO’s data 

• Resource Server: where RO’s data is stored 

• Authorization server: (may also be the resource server) 
• Authenticates RO, obtains authorisation 
• Issues access tokens to client 

• (RS / AS interaction not specified in OAuth 2)
13COSC412 Lecture 8, 2020



Setting up OAuth 2.0

• OAuth 2.0 requires registration of the client application 
with the authorisation server 
• The means of registration are not specified 
• Registration is a one-time operation: no RO mentioned 

• Registration of the application involves: 
• Specifying the client type 
• Providing redirection URIs (mandatory) 
• Other metadata required by authorisation server 
• e.g., application name, logo, description, T&Cs, etc.

14COSC412 Lecture 8, 2020



Redirection URIs in OAuth 2.0

• Redirection URIs need to use TLS, e.g., HTTPS 
• The parameter values are sensitive 
• (For development HTTP may be supported) 

• The redirection URI is how focus returns to the client 
from the authorisation server: e.g., 
• could be to a target web server 
• or to a ‘user-agent-based’ application 
• or to some other ‘native’ application
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Client’s record of registration

• Authorisation Service provides client with two records 
of registration: 
• Client ID (length undefined in the specification) 
• Client secret 

• Client ID is how the application is identified 

• Two types of client: confidential and public 
• Confidential clients can keep secrets 
• Public clients can’t keep secrets, e.g., JavaScript in browser
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OAuth ‘authorisation code flow’ steps

• Authorisation workflow is per access session 
• Client aims to get access to RO’s data 

• Figure below is indicative of order of flow 
• (Some further steps may be needed in practice)
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Client1. Client presents 
login URL

Resource 
Owner

Authorization 
Server

Resource 
Server

2. RO visits URL; authenticates; approves

3. AS uses redirect URI

4. Client gets 
auth code 5. Client presets auth code
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7. Client presents 
access token

8. Resource is provided



OAuth 2.0 grant types (1)

•We traced the authorisation code workflow 
• FYI: similar in pattern to decentralised authentication using 

protocols such as OpenID, Shibboleth, etc. 

• OAuth 2 provides several “grant types”: 
• Authorization code for apps on a web server 
• PKCE is like ‘authorization code’, but without client secret 

• Implicit for browser-based/mobile apps… but should use PKCE 
• RO Password Credentials for gaining RO’s login 
• Client credentials for application access
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OAuth 2.0 grant types (2)

• For authorisation code, the AS is an intermediary 
between client and RO 
• RO’s credentials never shared with client 
• Client’s credentials never shared with RO 
• (e.g., RO’s web browser might leak access tokens) 

• Implicit flow skips the authorisation code step 
• Token delivered straight to client 
• Client does not present a client secret 
• Suits JavaScript in-browser use cases
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OAuth 2.0 grant types (3)

• RO Password Credentials grant type does what it says: 
the client gets the RO’s username+password (!) 
• This requires a lot of trust in the client! 
• Does not represent controlled delegation 

• May make sense for clients developed by the resource 
server’s org., e.g., the Twitter app. accessing Twitter 

• Still creates tokens from the RO’s password 
• So can be used as a transition layer
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OAuth 2.0 grant types (4)

• Client credentials grant type is when the client is not 
acting on behalf of an RO 
• e.g., a helper application might retrieve a general set of data 

from the resource server 
• It would be unnecessary and inappropriate for general client 

requests to be linked to a particular RO (i.e., user) 

• Grant types are an evolution from OAuth 1.0 
• Handle a wider range of user agents
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OAuth 2.0 token response

• Let’s assume a request for an access token is valid 

• Response adds JSON to HTTP 200 body: 
• access_token 
• token_type (bearer or mac currently) 

• Optionally may add: 
• expires_in (lifetime of token in seconds) 
• refresh_token (think Kerberos “renewable” tickets) 
• scope (client requests some scope; RS can restrict it)
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OAuth token types

• Bearer token type: 
• if you are bearing the token, you are authorised 

• MAC token type: 
• Client demonstrates it has symmetric session key 
• Key is shared with resource server 

• Client builds “authenticator” of request fields 
• Uses session key to encrypt this data 
• Resource Server can check it
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Let’s see some OAuth 2.0 in practice

• Deploy a Dropbox ‘App’: 
• The Dropbox user is the resource owner 
• Dropbox is the RS and AS 
• Client is a JavaScript application running on our browser 

• Dropbox provides documentation and examples 
• Many languages are supported by Dropbox; 
• … and even more supported from the community 

• Demo app we use lists files within app folder on your Dropbox 
• (demo app is independent from Dropbox, though)
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Register the 
application
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Configure app. 
on Dropbox
• Set permissions: 
• files.content.read 

• As expected: 
• App key 
• App secret 
• App name, etc. 
• Redirect URI: 

http://localhost:8080/DropPHP/samples/simple.php?auth_redirect=1 
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localhost:8080/DropPHP/samples/simple.php?auth_redirect=1
localhost:8080/DropPHP/samples/simple.php?auth_redirect=1


Set up local application state

•Web pages served through Apache web server in this 
demo are using the ‘authorization code’ flow 

• Set up the OAuth2 demo: 
• Configure App key in the PHP file within the VM 
• This is line 26 and 27 of the file mentioned below, for me 
• You replace the app_key + app_secret string with your app’s value 

• You can run the network monitoring commands shown in previous 
lectures within the VM if you want to see what exchanges occur
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: ~$; /vagrant/setup-apache.sh 
: ~$; /vagrant/setup-oauth2.sh

: ~$; nano /vagrant/www/DropPHP/samples/simple.php



Now access our local client app

• Local client lists files within a Dropbox app folder 
• http://localhost:8180/DropPHP/samples/simple.php   

• “Authentication Required” 
is stated by PHP with 
continue link 

• On the first visit, Dropbox 
checks with me (I’m the RO) 
whether or not to authorise 
this client (our PHP script)
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http://localhost:8180/DropPHP/samples/simple.php
http://localhost:8180/DropPHP/samples/simple.php


The redirect URL is intentionally wrong…

• Normally this step would 
proceed without any explicit 
status reporting 

•We intentionally give the 
wrong port number so 
browser shows URL to you 

• Change 8080 to 8180 to pass 
the token back to the app
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Delegated authorisation complete

• Application is accessing files on my Dropbox 
• Reloading will show the PHP script stored a bearer token
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Network flows for APIv1 authorisation

31COSC412 Lecture 8, 2020

07:46:56.173084  IP 10.0.2.2.53996 > 10.0.2.15.http
GET /dropbox-test/web-file-browser.php HTTP/1.1
07:46:56.182691  IP 10.0.2.15.http > 10.0.2.2.53996
07:46:56.185901  IP 10.0.2.2.53996 > 10.0.2.15.http
GET /dropbox-test/web-file-browser.php/dropbox-auth-start HTTP/1.1
07:47:01.225136  IP 10.0.2.15.http > 10.0.2.2.53996
07:47:01.225630  IP 10.0.2.2.53996 > 10.0.2.15.http
07:47:07.650402  IP 10.0.2.2.54006 > 10.0.2.15.http
GET /dropbox-test/web-file-browser.php/dropbox-auth-finish?
state=y7-0B-8mbh9lriadFh4rKg%3D%3D&code=1XA8EnwNcNoAAAAAAAAAcDt6-julbNZMTq_-VioIlbY HTTP/1.1
07:47:07.650450  IP 10.0.2.15.http > 10.0.2.2.54006
07:47:07.905727  IP 10.0.2.15.42681 > api-5b.v.dropbox.com.https
07:47:07.905957  IP api-5b.v.dropbox.com.https > 10.0.2.15.42681
07:47:09.800935  IP 10.0.2.15.42681 > api-5b.v.dropbox.com.https
07:47:09.801332  IP api-5b.v.dropbox.com.https > 10.0.2.15.42681
07:47:09.802436  IP 10.0.2.15.http > 10.0.2.2.54006
07:47:09.802846  IP 10.0.2.2.54006 > 10.0.2.15.http
07:47:09.960174  IP api-5b.v.dropbox.com.https > 10.0.2.15.42681
07:47:09.960230  IP 10.0.2.15.42681 > api-5b.v.dropbox.com.https
07:47:14.807110  IP 10.0.2.15.http > 10.0.2.2.54006
07:47:14.807696  IP 10.0.2.2.54006 > 10.0.2.15.http



Network flows for token use under APIv1

• Client communicates directly with Dropbox
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07:47:16.449781  IP 10.0.2.2.54010 > 10.0.2.15.http
GET /dropbox-test/web-file-browser.php/ HTTP/1.1
07:47:16.449891  IP 10.0.2.15.http > 10.0.2.2.54010
07:47:16.734689  IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https
07:47:16.734993  IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
…
07:47:17.070410  IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.070955  IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https
07:47:17.071310  IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.349194  IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.350229  IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https
07:47:17.350605  IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.350735  IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https
07:47:17.350888  IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.352164  IP 10.0.2.15.http > 10.0.2.2.54010
07:47:17.352467  IP 10.0.2.2.54010 > 10.0.2.15.http
07:47:17.510048  IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.510108  IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https



In summary

• Distributed authorisation allows controlled data sharing 
• Useful for orchestrating interacting services 

• OAuth 2.0 is a leading standard for HTTP(S)-based 
distributed authorisation 
• However it raises some security concerns 

• Its focus on authorisation makes OAuth 2.0 a good 
point of contrast to Kerberos, and web authentication
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