
Decentralised
authorisation:

OAuth2

COSC412

Learning objectives

• Describe the notion of security ‘capabilities’

• Describe the purpose of web technology for
distributed authorisation

• Contrast between OAuth2 and Kerberos authorisation
and authentication systems

2COSC412 Lecture 8, 2020

OAuth2

• HTTP-based set of protocols to allow resource owners
to delegate access to their resources
• Has different interaction modes: e.g., for browser / smartphone

• OAuth2 is a token-based authorisation system
• Tokens are similar to Kerberos tickets
• Both abstract a notion of a capability
• To me, ’token’ implies something opaque
• We know that tickets have many attributes

3COSC412 Lecture 8, 2020

Defining security ‘capabilities’

• Abstract notion of access control matrix
• ACLs list role permissions alongside each asset
• Capabilities list permissions on assets for each user

• Permission to perform some action can be decoupled
from identity
• Also, have different timescales: capabilities are short-lived

compared to the user’s privilege
4COSC412 Lecture 8, 2020—example derived from Wikipedia’s

Asset 1 Asset 2 File Device

Role 1 read, write, execute, own execute read write

Role 2 read read, write, execute, own

Cryptography in capabilities?

• For token-based capabilities, knowledge of an
‘opaque’ token may be sufficient:
• e.g., token is indirectly passed to (OAuth) client through an

intermediary authorisation service
• Transport-level security required—token is password equivalent

• Alternatively, can encode data that only the target
service can decrypt
• thus the capability can be ‘checked’, as in Kerberos tickets

5COSC412 Lecture 8, 2020

Delegation of capabilities

• Authorisation using capabilities allows for delegation
• Transfer the capability to some other principal

• For example, using “add-on” software:
• You want it to access your resources, so that it can be of help

to you
• ... but you don't want it to be you
• Ideally: know which helper did what, when
• (But our uses often don’t have this level of audit trail yet!)

6COSC412 Lecture 8, 2020

Have 4 participants, compared to Kerberos

• Aim is to delegate privilege to an independent service
to access your data
• … so need to add another principal compared to Kerberos

• Also still have (in general terms):
• user agent, target service, and a security service

•… however in some cases above parties may combine
• e.g., service seeking access might be on the same device as

the user-agent

7COSC412 Lecture 8, 2020

OAuth history

• OAuth 1.0 released in 2007
• Twitter developers realised that OpenID was not going to

support delegated API access well
• OAuth then adopted into IETF: RFC 5849
• 2009: OAuth 1.0a fixes a session fixation flaw

• OAuth 2.0 is current evolution [RFC6749,6750,8252]
• Supported by Facebook, Twitter, Google, Microsoft, etc.
• … however this committee effort has made it complex
• Released in 2012 (… intended for 2010 release)

8COSC412 Lecture 8, 2020

More on session fixation attacks

• An attacker sets the session of their victim
• Attacker can then join that session

• Common web application workflow:
• No active session? Authenticate user and create new session
• Authentication check and session check may be separate
• Possible risk that victim’s authentication URL sets the session

• Not a cryptographic attack: authentication is skipped

9COSC412 Lecture 8, 2020

CSRF: also a session-based problem

• Cross-Site Request Forgery (CSRF)
• Another case of skipping cryptography

• Attacker embeds data on a.org that causes an HTTP
request that targets b.org :
• e.g., an image tag on a page, iframe, etc.

• If victim still has a valid session on b.org the target site
may honour the attacker’s request

10COSC412 Lecture 8, 2020

History repeating ... literally

• A recurring COSC412 theme of failure in cryptographic
implementations:
• Early OAuth 2.0 code often failed to use nonces (maybe still?)

• OAuth 2.0 makes compromises of convenience
• Requiring the ‘state’ parameter would limit some of the

potential OAuth 2.0 use cases
• (the ‘state’ parameter facilitates nonce checks)
• Ideally systems would indicate their intended security level

11COSC412 Lecture 8, 2020

OAuth controversy

• OAuth operates at the level of HTTP requests
• e.g., GET requests with parameters—URLs with sensitive data
• … but browsers aren’t designed to handle this
• What sorts of vectors spring to mind?

• Also, parameters aren’t appropriately checked
• (many layers of technology to worry about: URI encoding, etc.)

• ... however OAuth is in use, so let's explore it anyway!
• (Something like it will be in demand always, in any case)

12COSC412 Lecture 8, 2020

Roles in OAuth 2.0

• Resource Owner: the ‘end-user’ (or similar)
• RO is granting access to part of their account

• Client: software trying to access RO’s data

• Resource Server: where RO’s data is stored

• Authorization server: (may also be the resource server)
• Authenticates RO, obtains authorisation
• Issues access tokens to client

• (RS / AS interaction not specified in OAuth 2)
13COSC412 Lecture 8, 2020

Setting up OAuth 2.0

• OAuth 2.0 requires registration of the client application
with the authorisation server
• The means of registration are not specified
• Registration is a one-time operation: no RO mentioned

• Registration of the application involves:
• Specifying the client type
• Providing redirection URIs (mandatory)
• Other metadata required by authorisation server
• e.g., application name, logo, description, T&Cs, etc.

14COSC412 Lecture 8, 2020

Redirection URIs in OAuth 2.0

• Redirection URIs need to use TLS, e.g., HTTPS
• The parameter values are sensitive
• (For development HTTP may be supported)

• The redirection URI is how focus returns to the client
from the authorisation server: e.g.,
• could be to a target web server
• or to a ‘user-agent-based’ application
• or to some other ‘native’ application

15COSC412 Lecture 8, 2020

Client’s record of registration

• Authorisation Service provides client with two records
of registration:
• Client ID (length undefined in the specification)
• Client secret

• Client ID is how the application is identified

• Two types of client: confidential and public
• Confidential clients can keep secrets
• Public clients can’t keep secrets, e.g., JavaScript in browser

16COSC412 Lecture 8, 2020

OAuth ‘authorisation code flow’ steps

• Authorisation workflow is per access session
• Client aims to get access to RO’s data

• Figure below is indicative of order of flow
• (Some further steps may be needed in practice)

17COSC412 Lecture 8, 2020

Client1. Client presents
login URL

Resource
Owner

Authorization
Server

Resource
Server

2. RO visits URL; authenticates; approves

3. AS uses redirect URI

4. Client gets
auth code 5. Client presets auth code

6. Client gets access token

7. Client presents
access token

8. Resource is provided

OAuth 2.0 grant types (1)

•We traced the authorisation code workflow
• FYI: similar in pattern to decentralised authentication using

protocols such as OpenID, Shibboleth, etc.

• OAuth 2 provides several “grant types”:
• Authorization code for apps on a web server
• PKCE is like ‘authorization code’, but without client secret

• Implicit for browser-based/mobile apps… but should use PKCE
• RO Password Credentials for gaining RO’s login
• Client credentials for application access

18COSC412 Lecture 8, 2020

OAuth 2.0 grant types (2)

• For authorisation code, the AS is an intermediary
between client and RO
• RO’s credentials never shared with client
• Client’s credentials never shared with RO
• (e.g., RO’s web browser might leak access tokens)

• Implicit flow skips the authorisation code step
• Token delivered straight to client
• Client does not present a client secret
• Suits JavaScript in-browser use cases

19COSC412 Lecture 8, 2020

OAuth 2.0 grant types (3)

• RO Password Credentials grant type does what it says:
the client gets the RO’s username+password (!)
• This requires a lot of trust in the client!
• Does not represent controlled delegation

• May make sense for clients developed by the resource
server’s org., e.g., the Twitter app. accessing Twitter

• Still creates tokens from the RO’s password
• So can be used as a transition layer

20COSC412 Lecture 8, 2020

OAuth 2.0 grant types (4)

• Client credentials grant type is when the client is not
acting on behalf of an RO
• e.g., a helper application might retrieve a general set of data

from the resource server
• It would be unnecessary and inappropriate for general client

requests to be linked to a particular RO (i.e., user)

• Grant types are an evolution from OAuth 1.0
• Handle a wider range of user agents

21COSC412 Lecture 8, 2020

OAuth 2.0 token response

• Let’s assume a request for an access token is valid

• Response adds JSON to HTTP 200 body:
• access_token
• token_type (bearer or mac currently)

• Optionally may add:
• expires_in (lifetime of token in seconds)
• refresh_token (think Kerberos “renewable” tickets)
• scope (client requests some scope; RS can restrict it)

22COSC412 Lecture 8, 2020

OAuth token types

• Bearer token type:
• if you are bearing the token, you are authorised

• MAC token type:
• Client demonstrates it has symmetric session key
• Key is shared with resource server

• Client builds “authenticator” of request fields
• Uses session key to encrypt this data
• Resource Server can check it

23COSC412 Lecture 8, 2020

Let’s see some OAuth 2.0 in practice

• Deploy a Dropbox ‘App’:
• The Dropbox user is the resource owner
• Dropbox is the RS and AS
• Client is a JavaScript application running on our browser

• Dropbox provides documentation and examples
• Many languages are supported by Dropbox;
• … and even more supported from the community

• Demo app we use lists files within app folder on your Dropbox
• (demo app is independent from Dropbox, though)

24COSC412 Lecture 8, 2020

Register the
application

25COSC412 Lecture 8, 2020

Configure app.
on Dropbox
• Set permissions:
• files.content.read

• As expected:
• App key
• App secret
• App name, etc.
• Redirect URI:

http://localhost:8080/DropPHP/samples/simple.php?auth_redirect=1
26COSC412 Lecture 8, 2020

localhost:8080/DropPHP/samples/simple.php?auth_redirect=1
localhost:8080/DropPHP/samples/simple.php?auth_redirect=1

Set up local application state

•Web pages served through Apache web server in this
demo are using the ‘authorization code’ flow

• Set up the OAuth2 demo:
• Configure App key in the PHP file within the VM
• This is line 26 and 27 of the file mentioned below, for me
• You replace the app_key + app_secret string with your app’s value

• You can run the network monitoring commands shown in previous
lectures within the VM if you want to see what exchanges occur

27COSC412 Lecture 8, 2020

: ~$; /vagrant/setup-apache.sh
: ~$; /vagrant/setup-oauth2.sh

: ~$; nano /vagrant/www/DropPHP/samples/simple.php

Now access our local client app

• Local client lists files within a Dropbox app folder
• http://localhost:8180/DropPHP/samples/simple.php

• “Authentication Required”
is stated by PHP with
continue link

• On the first visit, Dropbox
checks with me (I’m the RO)
whether or not to authorise
this client (our PHP script)

28COSC412 Lecture 8, 2020

http://localhost:8180/DropPHP/samples/simple.php
http://localhost:8180/DropPHP/samples/simple.php

The redirect URL is intentionally wrong…

• Normally this step would
proceed without any explicit
status reporting

•We intentionally give the
wrong port number so
browser shows URL to you

• Change 8080 to 8180 to pass
the token back to the app

29COSC412 Lecture 8, 2020

Delegated authorisation complete

• Application is accessing files on my Dropbox
• Reloading will show the PHP script stored a bearer token

30COSC412 Lecture 8, 2020

Network flows for APIv1 authorisation

31COSC412 Lecture 8, 2020

07:46:56.173084 IP 10.0.2.2.53996 > 10.0.2.15.http
GET /dropbox-test/web-file-browser.php HTTP/1.1
07:46:56.182691 IP 10.0.2.15.http > 10.0.2.2.53996
07:46:56.185901 IP 10.0.2.2.53996 > 10.0.2.15.http
GET /dropbox-test/web-file-browser.php/dropbox-auth-start HTTP/1.1
07:47:01.225136 IP 10.0.2.15.http > 10.0.2.2.53996
07:47:01.225630 IP 10.0.2.2.53996 > 10.0.2.15.http
07:47:07.650402 IP 10.0.2.2.54006 > 10.0.2.15.http
GET /dropbox-test/web-file-browser.php/dropbox-auth-finish?
state=y7-0B-8mbh9lriadFh4rKg%3D%3D&code=1XA8EnwNcNoAAAAAAAAAcDt6-julbNZMTq_-VioIlbY HTTP/1.1
07:47:07.650450 IP 10.0.2.15.http > 10.0.2.2.54006
07:47:07.905727 IP 10.0.2.15.42681 > api-5b.v.dropbox.com.https
07:47:07.905957 IP api-5b.v.dropbox.com.https > 10.0.2.15.42681
07:47:09.800935 IP 10.0.2.15.42681 > api-5b.v.dropbox.com.https
07:47:09.801332 IP api-5b.v.dropbox.com.https > 10.0.2.15.42681
07:47:09.802436 IP 10.0.2.15.http > 10.0.2.2.54006
07:47:09.802846 IP 10.0.2.2.54006 > 10.0.2.15.http
07:47:09.960174 IP api-5b.v.dropbox.com.https > 10.0.2.15.42681
07:47:09.960230 IP 10.0.2.15.42681 > api-5b.v.dropbox.com.https
07:47:14.807110 IP 10.0.2.15.http > 10.0.2.2.54006
07:47:14.807696 IP 10.0.2.2.54006 > 10.0.2.15.http

Network flows for token use under APIv1

• Client communicates directly with Dropbox

32COSC412 Lecture 8, 2020

07:47:16.449781 IP 10.0.2.2.54010 > 10.0.2.15.http
GET /dropbox-test/web-file-browser.php/ HTTP/1.1
07:47:16.449891 IP 10.0.2.15.http > 10.0.2.2.54010
07:47:16.734689 IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https
07:47:16.734993 IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
…
07:47:17.070410 IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.070955 IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https
07:47:17.071310 IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.349194 IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.350229 IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https
07:47:17.350605 IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.350735 IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https
07:47:17.350888 IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.352164 IP 10.0.2.15.http > 10.0.2.2.54010
07:47:17.352467 IP 10.0.2.2.54010 > 10.0.2.15.http
07:47:17.510048 IP api-5b.v.dropbox.com.https > 10.0.2.15.42682
07:47:17.510108 IP 10.0.2.15.42682 > api-5b.v.dropbox.com.https

In summary

• Distributed authorisation allows controlled data sharing
• Useful for orchestrating interacting services

• OAuth 2.0 is a leading standard for HTTP(S)-based
distributed authorisation
• However it raises some security concerns

• Its focus on authorisation makes OAuth 2.0 a good
point of contrast to Kerberos, and web authentication

33COSC412 Lecture 8, 2020

