
Homomorphic encryption &
encrypted data processing

COSC412

Learning objectives

• Describe some types of useful work that can be done
on encrypted data, and risks in encrypting storage

• Appreciate the overall way in which an example
homomorphic encryption scheme operates

• Understand the potential usefulness of homomorphic
encryption in the context of cloud computing

2COSC412 Lecture 9, 2020

Non-malleability

• Attacker usually shouldn’t be able to make any
controlled changes to deciphered data

• This can be a property of the cypher in use …
• e.g., as seen previously: many block cipher modes

•… or a property of how the cypher is used
• e.g., ensure that there is a checksum in the data that has

been encrypted
• thus tampering is noticed even if decryption did not fail

3COSC412 Lecture 9, 2020

Malleability

• Errors in stream ciphers showed malleability
• If attacker can introduce a cipher-text bit error, there’s a

change in that decoded plain-text bit

• More mathematically: [m]k = m ⊕ S(k)
• Where: m—message, k—key, S(k)—key stream, ⊕—XOR

• Attacker generates [m]k ⊕ n
• n—attack string

• [m]k ⊕ n = m ⊕ S(k) ⊕ n = m ⊕ n ⊕ S(k) = [m ⊕ n]k

• Attack requires victim not to detect change
4COSC412 Lecture 9, 2020

Homomorphic encryption

• It is possible to perform useful computations on data
by manipulating cypher-text

• Apply malleability for good (it’s usually undesirable)

• Two broad classes of homomorphic cryptography
• Partially Homomorphic Encryption (PHE)
• Several reasonably efficient systems

• Fully Homomorphic Encryption (FHE)
• Systems exist but are not efficient (yet?)

5COSC412 Lecture 9, 2020

Partially Homomorphic Encryption

• One type of operation can be computed
• e.g., can compute encrypted sum of two encrypted values

without decryption

• Specifically for Paillier:
• With pub-key k, [m1]k and [m2]k
• Can compute [m1+m2]k by multiplying [m1]k and [m2]k

• For ElGamal & RSA:
• With [m1]k and [m2]k
• Can form [m1×m2]k by multiplying [m1]k and [m2]k

6COSC412 Lecture 9, 2020

Fully Homomorphic Encryption

• FHE has complete ring structure, and thus:
• general code can be translated to compute encrypted

outputs from encrypted inputs
• internal state is not disclosive

• Schemes exist:
• June 25, 2009: Craig Gentry’s first FHE lattice-based crypto.
• Later in 2009: Marten van Dijk, Craig Gentry, Shai Halevi and

Vinod Vaikuntanathan
• More recently, HElib http://shaih.github.io/HElib/

7COSC412 Lecture 9, 2020

http://shaih.github.io/HElib/
http://shaih.github.io/HElib/

Cloud computing

• Outsourcing of computation and storage—benefits:
• Avoid fixed costs of infrastructure
• Best practice in persistence and management
• Geographically spread (potentially)
• Elastic—can scale up on demand

• A key downside—security: gaining trust, privacy, etc.
• The cloud provider is not your organisation
• Further problems arise when crossing jurisdictions
• e.g., EU General Data Protection Regulation (GDPR); US CLOUD Act

8COSC412 Lecture 9, 2020

Homomorphic encryption + cloud

• Can facilitate same outsourcing as before … but
without cloud provider seeing raw data
• Cloud providers can still deny service
• … but clients can compensate: use multiple cloud providers

• Cloud can support some inefficiency through elasticity
• … but not too much or it becomes uneconomical
• Potential utility would justify FHE hardware accelerators

• September 2017: Azure confidential computing (SGX)

9COSC412 Lecture 9, 2020

https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/

Homomorphic encryption for AAA

• As seen previously, authentication and authorisation
often involve small amounts of data processing
• Thus one potential focus for homomorphic encryption and

cloud computing is in AAA

• In normal operation, access control policy evaluator
can’t see policy meaning or state
• Can have a third party trusted organisation that manages key

escrow (akin to Kerberos’ KDC)
• This way, can build a distributed access control system

10COSC412 Lecture 9, 2020

Doing useful work on encrypted data

• Encryption effects confidentiality
• Third parties can transport encrypted data
• e.g., in the sense of networks, or of storage systems

• Third parties cannot usefully modify encrypted data
• Doing so will destroy the data, usually detectably

• However ideally those third parties touching
confidential data can do useful work on it
• … although clearly confidentiality must remain
• Those parties could always have denied service (availability)

11COSC412 Lecture 9, 2020

Useful work on encrypted data

• Encrypted data can be structured so that useful work
can be done without decrypting it
• Note that these approaches do not modify the chunks of

encrypted data

• This is in contrast to homomorphic encryption
• The encrypted data is modified under homomorphic crypto.
• However the data being modified remains confidential: doing

modification does not imply being able to decrypt the data

12COSC412 Lecture 9, 2020

Encrypted search

• Seen previously: if encrypted data is not salted, in
many schemes, if a=b then [a]k=[b]k
• e.g., Adobe password database disclosures provided unsalted

encrypted passwords, and unencrypted password hints

• This property can be useful: e.g. search done by a third
party from whom data is hidden

• Recall mention of structure in such schemes
• Consider implications for key-value storage

13COSC412 Lecture 9, 2020

Encrypted search

• Separately encrypt the key and value
• High capacity key/value storage and/or database engines

can efficiently index encrypted values on encrypted keys

• Schemes have extended SQL interfaces to facilitate
this type of encrypted search

• Most straightforward approaches are limited to
performing equality testing
• No support for range queries

14COSC412 Lecture 9, 2020

Filtering rather than searching

• Rather than finding a particular key, instead use
encrypted attribute to cluster data
• i.e., expect that an encrypted search will return many records

• Subsequent filtering can occur at the client
• Get useful filtering: i.e., large-scale database helps the client

to not look at records that are determined to be irrelevant

•We can extend this idea to use multiple attributes

15COSC412 Lecture 9, 2020

Some support for range queries?

• So let’s assume we have an ordered key
• Client knows all the bits in the key
• We can group bits into separate encrypted attributes

• A given record can be retrieved by requesting
disjunction of encrypted attributes from the database:
• i.e., as a set of independent equality tests on encrypted data
• database does not get to know the bits…
• however there are risks of revealing correlations

16COSC412 Lecture 9, 2020

Query trees for range queries (1)

• A range query can be expressed as a set of equality
tests on constituent bits of key

•With 4 bits, express retrieval of elements less than 5:
• 5 is 01012, so we want:
• 0100 and 00?? (where ? is any bit)
• i.e., just two queries (in this case)

• Easily extended to more complex inequalities
• Also, no requirement to have single-bit-level encryption

17COSC412 Lecture 9, 2020

Query trees for range queries (2)

• Get expensive query expressions, but they still perform
a useful filtering role quickly—utility depends on queries

• Risks: database potentially learns a lot
• Can try to counter this by adding noise
• e.g., make additional queries for data that you don’t actually want
• … but then the noise needs to be effective
• Access statistics may allow a malicious database to filter noise

• Alternatively, use redundancy in coding of bit patterns
• i.e., provide multiple different ways to filter out the same dataset

18COSC412 Lecture 9, 2020

A useful cloud service: managed storage

• External storage: large economies of scale
• De-duplication of shared data
• Defragmentation of free space
• Multi-tier storage systems
• RAM; SSD; spinning disk; tape

• Problem: many staff need to access data: e.g.,
• sysadmins monitoring infrastructure
• operators generating external backups

19COSC412 Lecture 9, 2020

Seeing encrypted data: key escrow

• Cloud storage: usually encrypts data at rest
• The third party can still block availability to the client
• Ideally we want a system that encrypts data at the client-side
• But adds the usual difficulties of managing client-side software

• Encrypted data is a double-edged sword
• Underlying storage media can block availability

• Key escrow: key ownership is shared
• but … obligation to give up keys to authorities?

20COSC412 Lecture 9, 2020

Groups and key management

• Key escrow: group of principals can decrypt
• One approach: extend cryptographic methods

• Far easier: use a multi-stage cryptography process
• Encrypt data with one-time symmetric key k
• Use asymmetric cryptography to encrypt k for each principal

• Can also require collaboration to decrypt
• Threshold number of keys must be presented
• Organisations must agree on the need for disclosure

21COSC412 Lecture 9, 2020

Building reliable (available) storage systems

• Need to ensure updates are crash-safe
• Journaling added to conventional filesystems
• e.g., NTFS, HPFS+, Ext3

• Entire copy-on-write filesystems
• e.g., ZFS, BTRFS, ReFS, APFS, WAFL (NetApp)

• Replication, e.g., RAID schemes
• Can handle some number of devices going offline
• But what about handling corrupted data?

22COSC412 Lecture 9, 2020

Encrypted filesystems need reliable storage

• Mentioned previously: many OSs offer encrypted FSs
• … although notably TrueCrypt died without much explanation:
• a particular pity given that TrueCrypt did steganography

• Really want filesystem to actually verify your data
• Otherwise bit errors will most likely cause data loss

• ZFS, ReFS, or BTRFS (but not APFS!) can ‘scrub’ disks
• Combined with RAID, can keep encrypted data safe

23COSC412 Lecture 9, 2020

Repacking encrypted data

• Another use for encrypted, structured data

• Useful to package files into archives
• Particular use case: HTTPS upload
• Used not to handle multiple files effectively
• Instead pack files into a ZIP and upload that

•What if the data is sensitive?
• Can employ ZIP files that use a password

24COSC412 Lecture 9, 2020

How encrypted ZIP files work

• Before considering how to repack them, need to know
what we are repacking
• Why are TAR.GZ files (often) smaller than ZIP?
• How do self-extracting archives work?

• ZIP: each file is stored in a chunk
• There’s also a table of contents in order to collect metadata

• Encryption protects data, not metadata
• Sometimes the filenames may be sensitive

25COSC412 Lecture 9, 2020

Repacking encrypted ZIP content

• Needed simplicity of HTTP upload using ZIPs
• Allows easy upload of large encrypted data files

•Want users to be able to download subsets
• Research project had n-to-m interactions

• Thus can treat compressed files as opaque
• instead reorganise blocks into subsets
• regenerate the metadata for the new archive

26COSC412 Lecture 9, 2020

In summary

• Introduced homomorphic encryption
• Differentiated PHE and FHE schemes
• Gave a sketch of the operations possible

• Provided an overview of cloud computing and how it
can make use of the above techniques

• Discussed useful operations that third parties can
perform on encrypted data: (and some storage risks)
• e.g., storage, data repacking, and search

27COSC412 Lecture 9, 2020

