
Homomorphic encryption & 
encrypted data processing

COSC412



Learning objectives

• Describe some types of useful work that can be done 
on encrypted data, and risks in encrypting storage 

• Appreciate the overall way in which an example 
homomorphic encryption scheme operates  

• Understand the potential usefulness of homomorphic 
encryption in the context of cloud computing
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Non-malleability

• Attacker usually shouldn’t be able to make any 
controlled changes to deciphered data 

• This can be a property of the cypher in use … 
• e.g., as seen previously: many block cipher modes 

•… or a property of how the cypher is used 
• e.g., ensure that there is a checksum in the data that has 

been encrypted 
• thus tampering is noticed even if decryption did not fail
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Malleability

• Errors in stream ciphers showed malleability 
• If attacker can introduce a cipher-text bit error, there’s a 

change in that decoded plain-text bit 

• More mathematically: [m]k = m ⊕ S(k) 
• Where: m—message, k—key, S(k)—key stream, ⊕—XOR 

• Attacker generates [m]k ⊕ n 
• n—attack string 

• [m]k ⊕ n = m ⊕ S(k) ⊕ n = m ⊕ n ⊕ S(k) = [m ⊕ n]k 

• Attack requires victim not to detect change
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Homomorphic encryption

• It is possible to perform useful computations on data 
by manipulating cypher-text 

• Apply malleability for good (it’s usually undesirable) 

• Two broad classes of homomorphic cryptography 
• Partially Homomorphic Encryption (PHE) 
• Several reasonably efficient systems 

• Fully Homomorphic Encryption (FHE) 
• Systems exist but are not efficient (yet?)
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Partially Homomorphic Encryption

• One type of operation can be computed 
• e.g., can compute encrypted sum of two encrypted values 

without decryption 

• Specifically for Paillier: 
• With pub-key k, [m1]k and [m2]k 
• Can compute [m1+m2]k by multiplying [m1]k and [m2]k 

• For ElGamal & RSA: 
• With [m1]k and [m2]k 
• Can form [m1×m2]k by multiplying [m1]k and [m2]k
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Fully Homomorphic Encryption

• FHE has complete ring structure, and thus: 
• general code can be translated to compute encrypted 

outputs from encrypted inputs 
• internal state is not disclosive 

• Schemes exist: 
• June 25, 2009: Craig Gentry’s first FHE lattice-based crypto. 
• Later in 2009: Marten van Dijk, Craig Gentry, Shai Halevi and 

Vinod Vaikuntanathan 
• More recently, HElib http://shaih.github.io/HElib/ 
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Cloud computing

• Outsourcing of computation and storage—benefits: 
• Avoid fixed costs of infrastructure 
• Best practice in persistence and management 
• Geographically spread (potentially) 
• Elastic—can scale up on demand 

• A key downside—security: gaining trust, privacy, etc. 
• The cloud provider is not your organisation 
• Further problems arise when crossing jurisdictions 
• e.g., EU General Data Protection Regulation (GDPR); US CLOUD Act
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Homomorphic encryption + cloud

• Can facilitate same outsourcing as before … but 
without cloud provider seeing raw data 
• Cloud providers can still deny service 
• … but clients can compensate: use multiple cloud providers 

• Cloud can support some inefficiency through elasticity 
• … but not too much or it becomes uneconomical 
• Potential utility would justify FHE hardware accelerators 

• September 2017: Azure confidential computing (SGX)
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Homomorphic encryption for AAA

• As seen previously, authentication and authorisation 
often involve small amounts of data processing 
• Thus one potential focus for homomorphic encryption and 

cloud computing is in AAA 

• In normal operation, access control policy evaluator 
can’t see policy meaning or state 
• Can have a third party trusted organisation that manages key 

escrow (akin to Kerberos’ KDC) 
• This way, can build a distributed access control system
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Doing useful work on encrypted data

• Encryption effects confidentiality 
• Third parties can transport encrypted data 
• e.g., in the sense of networks, or of storage systems 

• Third parties cannot usefully modify encrypted data 
• Doing so will destroy the data, usually detectably 

• However ideally those third parties touching 
confidential data can do useful work on it 
• … although clearly confidentiality must remain 
• Those parties could always have denied service (availability)
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Useful work on encrypted data

• Encrypted data can be structured so that useful work 
can be done without decrypting it 
• Note that these approaches do not modify the chunks of 

encrypted data 

• This is in contrast to homomorphic encryption 
• The encrypted data is modified under homomorphic crypto. 
• However the data being modified remains confidential: doing 

modification does not imply being able to decrypt the data
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Encrypted search

• Seen previously: if encrypted data is not salted, in 
many schemes, if a=b then [a]k=[b]k 
• e.g., Adobe password database disclosures provided unsalted 

encrypted passwords, and unencrypted password hints 

• This property can be useful: e.g. search done by a third 
party from whom data is hidden 

• Recall mention of structure in such schemes 
• Consider implications for key-value storage
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Encrypted search

• Separately encrypt the key and value 
• High capacity key/value storage and/or database engines 

can efficiently index encrypted values on encrypted keys 

• Schemes have extended SQL interfaces to facilitate 
this type of encrypted search 

• Most straightforward approaches are limited to 
performing equality testing 
• No support for range queries
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Filtering rather than searching

• Rather than finding a particular key, instead use 
encrypted attribute to cluster data 
• i.e., expect that an encrypted search will return many records 

• Subsequent filtering can occur at the client 
• Get useful filtering: i.e., large-scale database helps the client 

to not look at records that are determined to be irrelevant 

•We can extend this idea to use multiple attributes
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Some support for range queries?

• So let’s assume we have an ordered key 
• Client knows all the bits in the key 
• We can group bits into separate encrypted attributes 

• A given record can be retrieved by requesting 
disjunction of encrypted attributes from the database: 
• i.e., as a set of independent equality tests on encrypted data 
• database does not get to know the bits… 
• however there are risks of revealing correlations
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Query trees for range queries (1)

• A range query can be expressed as a set of equality 
tests on constituent bits of key 

•With 4 bits, express retrieval of elements less than 5: 
• 5 is 01012, so we want: 
• 0100 and 00?? (where ? is any bit) 
• i.e., just two queries (in this case) 

• Easily extended to more complex inequalities  
• Also, no requirement to have single-bit-level encryption
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Query trees for range queries (2)

• Get expensive query expressions, but they still perform 
a useful filtering role quickly—utility depends on queries 

• Risks: database potentially learns a lot 
• Can try to counter this by adding noise 
• e.g., make additional queries for data that you don’t actually want 
• … but then the noise needs to be effective 
• Access statistics may allow a malicious database to filter noise 

• Alternatively, use redundancy in coding of bit patterns 
• i.e., provide multiple different ways to filter out the same dataset

18COSC412 Lecture 9, 2020



A useful cloud service: managed storage

• External storage: large economies of scale 
• De-duplication of shared data 
• Defragmentation of free space 
• Multi-tier storage systems 
• RAM; SSD; spinning disk; tape 

• Problem: many staff need to access data: e.g., 
• sysadmins monitoring infrastructure 
• operators generating external backups
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Seeing encrypted data: key escrow

• Cloud storage: usually encrypts data at rest 
• The third party can still block availability to the client 
• Ideally we want a system that encrypts data at the client-side 
• But adds the usual difficulties of managing client-side software 

• Encrypted data is a double-edged sword 
• Underlying storage media can block availability 

• Key escrow: key ownership is shared 
• but … obligation to give up keys to authorities?
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Groups and key management

• Key escrow: group of principals can decrypt 
• One approach: extend cryptographic methods 

• Far easier: use a multi-stage cryptography process 
• Encrypt data with one-time symmetric key k 
• Use asymmetric cryptography to encrypt k for each principal 

• Can also require collaboration to decrypt 
• Threshold number of keys must be presented 
• Organisations must agree on the need for disclosure
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Building reliable (available) storage systems

• Need to ensure updates are crash-safe 
• Journaling added to conventional filesystems 
• e.g., NTFS, HPFS+, Ext3 

• Entire copy-on-write filesystems 
• e.g., ZFS, BTRFS, ReFS, APFS, WAFL (NetApp) 

• Replication, e.g., RAID schemes 
• Can handle some number of devices going offline 
• But what about handling corrupted data?
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Encrypted filesystems need reliable storage

• Mentioned previously: many OSs offer encrypted FSs 
• … although notably TrueCrypt died without much explanation: 
• a particular pity given that TrueCrypt did steganography 

• Really want filesystem to actually verify your data 
• Otherwise bit errors will most likely cause data loss 

• ZFS, ReFS, or BTRFS (but not APFS!) can ‘scrub’ disks 
• Combined with RAID, can keep encrypted data safe

23COSC412 Lecture 9, 2020



Repacking encrypted data

• Another use for encrypted, structured data 

• Useful to package files into archives 
• Particular use case: HTTPS upload 
• Used not to handle multiple files effectively 
• Instead pack files into a ZIP and upload that 

•What if the data is sensitive? 
• Can employ ZIP files that use a password
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How encrypted ZIP files work

• Before considering how to repack them, need to know 
what we are repacking 
• Why are TAR.GZ files (often) smaller than ZIP? 
• How do self-extracting archives work? 

• ZIP: each file is stored in a chunk 
• There’s also a table of contents in order to collect metadata 

• Encryption protects data, not metadata 
• Sometimes the filenames may be sensitive
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Repacking encrypted ZIP content

• Needed simplicity of HTTP upload using ZIPs 
• Allows easy upload of large encrypted data files 

•Want users to be able to download subsets 
• Research project had n-to-m interactions 

• Thus can treat compressed files as opaque 
• instead reorganise blocks into subsets 
• regenerate the metadata for the new archive
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In summary

• Introduced homomorphic encryption 
• Differentiated PHE and FHE schemes 
• Gave a sketch of the operations possible 

• Provided an overview of cloud computing and how it 
can make use of the above techniques 

• Discussed useful operations that third parties can 
perform on encrypted data: (and some storage risks) 
• e.g., storage, data repacking, and search
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