
Reliability, distributed
consensus and blockchain

COSC412

Learning objectives

• Encourage you to always design for failure

• Appreciate how decentralised consensus is useful to
support principles of security such as reliability and
non-repudiation

• Gain a high-level view of blockchain approaches and
how they support, e.g., applications like bitcoin, and
other emerging decentralised autonomous systems

2COSC412 Lecture 10, 2020

Securing valid results on fallible machines

• Digital devices suffer (non-malicious) failures
• RAM corruption errors—c.f., ECC memory
• Storage media may fade or malfunction
• Beware cheap writable optical media or flash storage
• SSD devices fail very differently from magnetic hard drives

• Also may have critical software fail:
• filesystem bugs
• compression library bugs
• system use contrary to supported operation

3COSC412 Lecture 10, 2020

One solution: rerun your computations

• If you can estimate the probability of failures, you can
determine how many trials of a computation you need
to achieve a given level of confidence in the result
• Excessive system failures may become overshadowed by

other concerns anyway…

• Of course multiple trials need not be run in serial:
• can structure repeatability within a software service
• cloud computing provides convenient elasticity for parallelism

4COSC412 Lecture 10, 2020

Aside: machines designed to fail frequently

• Reliability of computers is adjustable
• Can trade off against speed, power consumption, etc.
• Consider the practice of overclocking CPUs:
• may need to apply CPU voltage adjustments;
• may affect reliability of computation—possibly catastrophically!

• Computer participates in a group repeating results?
• Can purposefully design such a computer to be less reliable
• May end up with a net saving in resource trade-off

5COSC412 Lecture 10, 2020

Merkle tree: efficient integrity checking

• Consider a set of data blocks Di, then:
• A hash H(Di) is computed for each data block Di
• A tree is built, with parent hash hashing hashes of its children
• The root hash will thus summarise all the data blocks

• Checking hash on particular Di can be done cheaply
• Get trusted root hash; other hashes can come from anywhere
• Used within Bittorrent to check blocks retrieved build valid file
• Also with ZFS, within bitcoin transaction blocks, etc.

6COSC412 Lecture 10, 2020

Distributed consensus—trustworthy results

• Common in more than just storage systems, e.g.:
• Master/master relational database server replication
• NoSQL: e.g., use of gossip protocols and eventual consistency
• Network infrastructure such as routers with hot spares

• Systems now exist that just handle consensus gathering
• e.g., Apache ZooKeeper offers distributed synchronisation

• ZooKeeper used in other systems: Hadoop, HBase, …

7COSC412 Lecture 10, 2020

Apache ZooKeeper

• Essentially a multi-server, key-value database system
• However, emphasis is on correctness and synchronisation

• Has always been a core component of Hadoop
• Helps coordinate & manage scheduling of map-reduce tasks

• Key property: facilitates atomic broadcast
• Under atomic broadcast all correct processes in a distributed

system receive the same sequence of events, or all abort

8COSC412 Lecture 10, 2020

Add in potentially malicious parties

• Apache ZooKeeper commonly used when we trust all
servers: they are owned by one organisation, on a LAN

•When malicious parties may be participating, the
consensus set size must grow
• Need a majority of votes from the assumed-benign server set

• Could we choose not to control the server set?
• Enter blockchain, and bitcoin as an example of using it …

9COSC412 Lecture 10, 2020

Warm up exercise: build a cryptocurrency

• How do we make a cryptocurrency “coin”?

• How do we identify coin owners?

• How can we protect the system from forgery?

• How do we record ownership and transfer of
ownership?

• Can copy digital assets perfectly, so how can coins be
single-use?

10COSC412 Lecture 10, 2020

Distributed consensus needs within bitcoin

• To work, currencies need to track who has what
• Normal currency uses TTPs such as mint, banks, etc.

• bitcoin has all validating nodes store the whole ledger
• This distributed ledger indicates order of transactions
• Collectively agreeing its content avoids double-spending

• A wallet is a hash of a public key a client generates
• Own private key? Can prove your connection to transactions
• … don’t actually need a representation of ₿ apart from ledger

11COSC412 Lecture 10, 2020

Proof of work—validate ₿ transactions

• Must protect validation from Sybil attacks, so:
• Make it computationally costly to incorporate new transactions
• move to how much computing power you control, not just the

number of identities that you control (i.e., the basis of Sybil attacks)

• Make it rewarding to incorporate new transactions—more later

• Validator collects transactions into a block
• checks transactions internally first—could be double spending
• forms Merkle tree over transaction hashes
• to close off the block, it applies proof of work algorithm

12COSC412 Lecture 10, 2020

bitcoin transaction validation

• Proof of work must be easy to check; hard to compute
• In some ways like a hard-to-apply digital signature

• In bitcoin, must find a nonce that when appended to the
block of transactions+ gives a number less than a target
• SHA-256 hash function used, specifically
• Target is dynamic: ensures blocks take ~10 minutes to compute,

regardless of changes in net computational resources available

• Blockchain because block hash included in next block
• September 2020: bitcoin blockchain is about 298 GB

13COSC412 Lecture 10, 2020 + and other things we are not talking about

Validators, mining, fees and the network

• Bitcoin miners are carrying out validation of blocks

• Two incentives for miners to solve block hash task:
• payment of 6.25 bitcoin since May 2020 (was 50₿ in 2009!)
• value halves periodically; by 2140 CE no further bitcoin increase

• ability to levy fees—commercial competition applies

• Broadcast communication between miners uses a
peer-to-peer protocol
• avoids central infrastructure… and knowing the miner set (!)

14COSC412 Lecture 10, 2020

Results from block validation

• Rate is ~10 minutes, but this is probabilistic
• e.g., might guess an appropriate nonce first off (if really lucky)

• Automatically helps serialisation: variance in mining
time is larger than the message broadcast time
• Miners want to publish results ASAP so to receive payment
• (Some potential attacks do involve holding back a solution.)

• Still possible for multiple answers to be broadcast, so…

15COSC412 Lecture 10, 2020

Blockchain forks

•When nodes hear multiple solutions they keep them all

• Subsequent mining is only done on your longest fork
• Extremely unlikely that parallel forks will continue for long
• (Well, unless fork is due to a software bug, which has happened…)

• Probability distribution likely to clearly favour one branch

• Attacker with significant resources can try to keep fork
alive, but cost, coordination and probability won’t help
• (Some attacks involve late revealing of privately mined forks.)

16COSC412 Lecture 10, 2020

How/when is a transaction approved?

• Clearly the transaction has to be recorded in a block

• Two simple rules are applied:
• Relevant block must be in the longest fork of blockchain
• Five or more blocks must already follow it in the blockchain

• This causes a transaction clearing delay (in effect)
• Consider possible attacks, e.g., partitioning of network
• Probably impractically difficult to effect

17COSC412 Lecture 10, 2020

Content of transactions

• No persistent coins: serial numbers are transaction hashes

• Transaction specifies a number of inputs and outputs,
with inputs usually previous transactions
• can output back to yourself, thus pocketing ‘change’
• remainder of input, after subtracting output, is transaction fee

• Since all transactions are in the blockchain:
• can search back in time to find transaction:
• either genesis block (50 bitcoin) or a coinbase mining reward

18COSC412 Lecture 10, 2020

Nodes in bitcoin network

• There are four main roles nodes can take on:
• Network—all nodes help routing within the p2p protocol
• Wallet—manage keys that show ownership of transactions
• Miner—participate in the proof-of-work block verifications
• Blockchain—can carry the full blockchain

• Bitcoin Core reference client contains all four functions
• Miners may leave out wallet
• Lightweight wallet only has wallet and network components
• Some notes may store blockchain, but not do mining

19COSC412 Lecture 10, 2020

Many more aspects of bitcoin not discussed

• bitcoin blocks also include management parameters:
• e.g., version numbers to allow the protocol to be modified
• Versioning is very important given that the protocol behaviour

is the fundamental basis on which the currency is built

• bitcoin specifies transactions with a scripting language
• P2PKH—“pay to public key hash” is a common transaction
• “multisig” transactions allow m-of-n public key sign-off
• Smart contracts can be encoded, beyond money transfer

20COSC412 Lecture 10, 2020

bitcoin scalability challenges

• Originally, blocks had no size limit, but that risks DoS
• Added a limit that blocks can only be 1 megabyte at most

• Blocksize limit has caused scalability problems:
• Provides for about three transactions per second at best
• Ten minutes to add a block to blockchain
• Thus bitcoin transactions can take hours to confirm

• Segregated Witness (SegWit) approx. doubles size

21COSC412 Lecture 10, 2020

Concerns: anonymity, privacy and value

• bitcoin has been discussed as being anonymous
• This makes little sense—the entire ledger is available publicly!
• However it is true that public keys need not be identified

• Linkability concerns: metadata may allow subsequent
determination of wallet’s owners
• Large state organisations likely want to do this,
• e.g., law enforcement

• State players globally are key to bitcoin value

22COSC412 Lecture 10, 2020

Blockchain aside from bitcoin

• Increasingly blockchain services are being offered
independently of technologies such as bitcoin
• Blockchain as a Service is offered on the commercial cloud

• There is much hype, and often gaps in understanding
• However bitcoin helped show ways in which decentralised

systems can appear to form distributed consensus
• Many aspects existed already, such as in peer-to-peer systems
• Many commercial organisations are interested…

23COSC412 Lecture 10, 2020

Different sorts of blockchain systems

• Permission-less systems—bitcoin, Etherium, etc.
• Need Proof of Work (bitcoin, Etherium), Proof of Stake (Nxt), …

• Permissioned—there is control over who participates
• Can use algorithms like Paxos or RAFT to form consensus
• … similar sorts of systems existed previously

• Other axis is public / private
• sovrin is a permissioned+public blockchain managing identity
• hyperledger is a premissioned, private blockchain

24COSC412 Lecture 10, 2020

Non-currency blockchain uses

• Supply chain management: tracked asset transfer
• Particular with respect to pharmaceuticals
• Many organisations; common goal; fraud impractical

• Microgrids and neighbourhood electricity trading

• e-democracy and voting (how could that go wrong?)

• Always ask: is blockchain really needed? Alternatives?

25COSC412 Lecture 10, 2020

Blockchain 2.0

• Executable contracts rather than transfer of currency
• bitcoin already shows practicality of scripting language
• bitcoin facilitates agreement of future events (& cancelation)

• Example applications cover legal, financial, etc.—
• Systems for royalty collection on behalf of performers
• Decentralised social networks; gaming; gambling
• Conveyancing; finance; insurance
• Government record storage; electronic health records …

26COSC412 Lecture 10, 2020

Ethereum

• Ethereum aims to build a global computing platform
• Cannot be shut down easily
• Can scale up and down
• Resistant to censorship and other interference

• Ethereum Virtual Machine
• Platform on which code executes

• Usually need some sort of bridge to other web APIs

27COSC412 Lecture 10, 2020

Blockchain scheme governance

•What if a protocol vulnerability is discovered?
• Say a hacker runs away with credit with millions of dollars
• Entire blockchain system can agree to rewind history
• … but this is a capability blockchain systems seek to give up

• Etherium e.g.: Decentralized Autonomous Organization
• Raised $150m crowd-sourced funding; DAO was ~15% of ether
• Code had vulnerabilities; hacker siphoned off a third of DAO
• Soft-fork and hard-fork resolutions discussed; hard-fork done

28COSC412 Lecture 10, 2020

Conclusion

• Failures can threaten security by affecting availability
• Hardware and software problems

• Efficient means exist to reach decentralised consensus:
• Merkle trees for checking integrity
• Apache ZooKeeper, within a known set
• Proof-of-work within blockchain schemes such as bitcoin

• Discussed how bitcoin works despite threats

• Outlined possible future blockchain applications

29COSC412 Lecture 10, 2020

